Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

HMGA proteins promote ATM expression and enhance cancer cell resistance to genotoxic agents

Abstract

DNA-damaging therapies represent a keystone in cancer treatment. Unfortunately, many tumors often relapse because of a group of cancer cells, which are resistant to conventional therapies. High-mobility group A (HMGA) proteins has a key role in cell transformation, and their overexpression is a common feature of human malignant neoplasias, representing a poor prognostic index often correlated to anti-cancer drug resistance. Our previous results demonstrated that HMGA1 is a substrate of ataxia-telangiectasia mutated (ATM), the main cellular sensor of genotoxic stress. Here we also report thatHMGA2, the other member of the HMGA family, is a novel substrate of ATM. Interestingly, we found that HMGA proteins positively regulate ATM gene expression. Moreover, induction of ATM kinase activity by DNA-damaging agents enhances HMGA-dependent transcriptional activation of ATM promoter, suggesting that ATM expression is modulated by a DNA-damage- and HMGA-dependent positive feedback loop. Finally, inhibition of HMGA expression in mouse embryonic fibroblasts and in cancer cells strongly reduces ATM protein levels, impairing the cellular DNA-damage response and enhancing the sensitivity to DNA-damaging agents. These findings indicate this novel HMGA-ATM pathway as a new potential target to improve the effectiveness of conventional anti-neoplastic treatments on the genotoxic-drug resistant cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Bakkenist CJ, Kastan MB . (2003). DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421: 499–506.

    Article  CAS  Google Scholar 

  • Berkovich E, Ginsberg D . (2003). ATM is a target for positive regulation by E2F-1. Oncogene 22: 161–167.

    Article  CAS  Google Scholar 

  • Berlingieri MT, Pierantoni GM, Giancotti V, Santoro M, Fusco A . (2002). Thyroid cell transformation requires the expression of the HMGA1 proteins. Oncogene 21: 2971–2980.

    Article  CAS  Google Scholar 

  • Canman CE, Lim DS, Cimprich KA, Taya Y, Tamai K, Sakaguchi K et al. (1998). Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281: 1677–1679.

    Article  CAS  Google Scholar 

  • Chiappetta G, Avantaggiato V, Visconti R, Fedele M, Battista S, Trapasso F et al. (1996). High level expression of the HMGI (Y) gene during embryonic development. Oncogene 13: 2439–2446.

    CAS  Google Scholar 

  • Crescenzi E, Palumbo G, de Boer J, Brady HJ . (2008). Ataxia telangiectasia mutated and p21CIP1 modulate cell survival of drug-induced senescent tumor cells: implications for chemotherapy. Clin Cancer Res 14: 1877–1887.

    Article  CAS  Google Scholar 

  • d'Adda di Fagagna F . (2008). Living on a break: cellular senescence as a DNA-damage response. Nat Rev Cancer 8: 512–522.

    Article  CAS  Google Scholar 

  • Fedele M, Battista S, Manfioletti G, Croce CM, Giancotti V, Fusco A . (2001a). Role of the high mobility group A proteins in human lipomas. Carcinogenesis 22: 1583–1591.

    Article  CAS  Google Scholar 

  • Fedele M, Fusco A . (2010). HMGA and cancer. Biochim Biophys Acta 1799: 48–54.

    Article  CAS  Google Scholar 

  • Fedele M, Pierantoni GM, Berlingieri MT, Battista S, Baldassarre G, Munshi N et al. (2001b). Overexpression of proteins HMGA1 induces cell cycle deregulation and apoptosis in normal rat thyroid cells. Cancer Res 61: 4583–4590.

    CAS  Google Scholar 

  • Fedele M, Visone R, De Martino I, Troncone G, Palmieri D, Battista S et al. (2006). HMGA2 induces pituitary tumorigenesis by enhancing E2F1 activity. Cancer Cell 9: 459–471.

    Article  CAS  Google Scholar 

  • Fusco A, Fedele M . (2007). Roles of HMGA proteins in cancer. Nat Rev Cancer 7: 899–910.

    Article  CAS  Google Scholar 

  • Gueven N, Keating K, Fukao T, Loeffler H, Kondo N, Rodemann HP et al. (2003). Site-directed mutagenesis of the ATM promoter: consequences for response to proliferation and ionizing radiation. Genes Chromosomes Cancer 38: 157–167.

    Article  CAS  Google Scholar 

  • Hickson I, Zhao Y, Richardson CJ, Green SJ, Martin NM, Orr AI et al. (2004). Identification and characterization of a novel and specific inhibitor of the ataxia-telangiectasia mutated kinase ATM. Cancer Res 64: 9152–9159.

    Article  CAS  Google Scholar 

  • Jackson SP . (2009). The DNA-damage response: new molecular insights and new approaches to cancer therapy. Biochem Soc Trans 37: 483–494.

    Article  CAS  Google Scholar 

  • Johnson KR, Lehn DA, Reeves R . (1989). Alternative processing of mRNAs encoding mammalian chromosomal high-mobility-group proteins HMG-I and HMG-Y. Mol Cell Biol 9: 2114–2123.

    Article  CAS  Google Scholar 

  • Kühne M, Riballo E, Rief N, Rothkamm K, Jeggo PA, Löbrich MA . (2004). Double-strand break repair defect in ATM-deficient cells contributes to radiosensitivity. Cancer Res 64: 500–508.

    Article  Google Scholar 

  • Lavin MF . (2008). Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nat Rev Mol Cell Biol 9: 759–769.

    Article  CAS  Google Scholar 

  • Lavin MF, Kozlov S . (2007). ATM activation. DNA damage response. Cell Cycle 6: 931–942.

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD . (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402–408.

    Article  CAS  Google Scholar 

  • Martinez Hoyos J, Fedele M, Battista S, Pentimalli F, Kruhoffer M, Arra C et al. (2004). Identification of the genes up- and down-regulated by the high mobility group A1 (HMGA1) proteins: tissue specificity of the HMGA1-dependent gene regulation. Cancer Res 64: 5728–5735.

    Article  Google Scholar 

  • Meyn MS, Strasfeld L, Allen C . (1994). Testing the role of p53 in the expression of genetic instability and apoptosis in ataxia-telangiectasia. Int J Radiat Biol 66: S141–S149.

    Article  CAS  Google Scholar 

  • Nagpal S, Ghosn C, DiSepio D, Molina Y, Sutter M, Klein ES et al. (1999). Retinoid-dependent recruitment of a histone H1 displacement activity by retinoic acid receptor. J Biol Chem 274: 22563–22568.

    Article  CAS  Google Scholar 

  • Narita M, Narita M, Krizhanovsky V, Nuñez S, Chicas A, Hearn SA et al. (2006). A novel role for high-mobility group a proteins in cellular senescence and heterochromatin formation. Cell 126: 503–514.

    Article  CAS  Google Scholar 

  • O'Neill T, Dwyer AJ, Ziv Y, Chan DW, Lees-Miller SP, Abraham RH et al. (2000). Utilization of oriented peptide libraries to identify substrate motifs selected by ATM. J Biol Chem 275: 22719–22727.

    Article  CAS  Google Scholar 

  • Parrinello S, Samper E, Krtolica A, Goldstein J, Melov S, Campisi J . (2003). Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nat Cell Biol 5: 741–747.

    Article  CAS  Google Scholar 

  • Pentimalli F, Palmieri D, Pacelli R, Garbi C, Cesari R, Martin E et al. (2008). HMGA1 protein is a novel target of the ATM kinase. Eur J Cancer 44: 2668–2679.

    Article  CAS  Google Scholar 

  • Pierantoni GM, Fedele M, Pentimalli F, Benvenuto G, Pero R, Viglietto G et al. (2001). High mobility group I (Y) proteins bind HIPK2, a serine-threonine kinase protein which inhibits cell growth. Oncogene 20: 6132–6141.

    Article  CAS  Google Scholar 

  • Pierantoni GM, Rinaldo C, Esposito F, Mottolese M, Soddu S, Fusco A . (2006). High Mobility Group A1 (HMGA1) proteins interact with p53 and inhibit its apoptotic activity. Cell Death Differ 5: 2045–2048.

    Google Scholar 

  • Pierantoni GM, Rinaldo C, Mottolese M, Di Benedetto A, Esposito F, Soddu S et al. (2007). High-mobility group A1 inhibits p53 by cytoplasmic relocalization of its proapoptotic activator HIPK2. J Clin Invest 117: 693–702.

    Article  CAS  Google Scholar 

  • Reeves R, Adair JE . (2005). Role of high mobility group (HMG) chromatin proteins in DNA repair. DNA Repair (Amst) 8: 926–938.

    Article  Google Scholar 

  • Reeves R, Nissen MS . (1990). The A.T-DNA-binding domain of mammalian high mobility group I chromosomal proteins. A novel peptide motif for recognizing DNA structure. J Biol Chem 265: 8573–8582.

    CAS  Google Scholar 

  • Sarkaria JN, Busby EC, Tibbetts RS, Roos P, Taya Y, Karnitz LM et al. (1999). Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine. Cancer Res 59: 4375–4382.

    CAS  Google Scholar 

  • Sarkaria JN, Eshleman JS . (2001). ATM as a target for novel radiosensitizers. Semin Radiat Oncol 11: 316–327.

    Article  CAS  Google Scholar 

  • Sarkaria JN, Tibbetts RS, Busby EC, Kennedy AP, Hill DE, Abraham RT . (1998). Inhibition of phosphoinositide 3-kinase related kinases by the radiosensitizing agent wortmannin. Cancer Res 58: 4375–4382.

    CAS  Google Scholar 

  • Savitsky K, Bar-Shira A, Gilad S, Rotman G, Ziv Y, Vanagaite L et al. (1995). A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 268: 1749–1753.

    Article  CAS  Google Scholar 

  • Viale A, De Franco F, Orleth A, Cambiaghi V, Giuliani V, Bossi D et al. (2009). Cell-cycle restriction limits DNA damage and maintains self-renewal of leukaemia stem cells. Nature 457: 51–56.

    Article  CAS  Google Scholar 

  • Wood LJ, Maher JF, Bunton TE, Resar LM . (2000). The oncogenic properties of the HMG-I gene family. Cancer Res 60: 4256–4261.

    CAS  Google Scholar 

  • Xu Y, Ashley T, Brainerd EE, Bronson RT, Meyn MS, Baltimore D . (1996). Targeted disruption of ATM leads to growth retardation, chromosomal fragmentation during meiosis, immune defects, and thymic lymphoma. Genes Dev 10: 2411–2422.

    Article  CAS  Google Scholar 

  • Xu Y, Yang EM, Brugarolas J, Jacks T, Baltimore D . (1998). Involvement of p53 and p21 in cellular defects and tumorigenesis in Atm−/− mice. Mol Cell Biol 18: 4385–4390.

    Article  CAS  Google Scholar 

  • Zhou X, Benson KF, Ashar HR, Chada K . (1995). Mutation responsible for the mouse pygmy phenotype in the developmentally regulated factor HMGI-C. Nature 376: 771–774.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank V Costanzo for revision of the paper and I Pellegrino for technical support. We are grateful to MB Kastan for providing the pFLAG-ATM expression construct and to D Ginsberg for the pLuc-ATM reporter vector. This work was supported by grants from the Associazione Italiana Ricerca sul Cancro (AIRC). DP is recipient of a fellowship from Fondazione Italiana per la Ricerca sul Cancro (FIRC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Fusco.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palmieri, D., Valentino, T., D'Angelo, D. et al. HMGA proteins promote ATM expression and enhance cancer cell resistance to genotoxic agents. Oncogene 30, 3024–3035 (2011). https://doi.org/10.1038/onc.2011.21

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.21

Keywords

Search

Quick links