Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

IL-3 is a novel target to interfere with tumor vasculature

Abstract

Angiogenesis inhibiting agents are currently integral component of anticancer therapy. However, tumors, initially responsive to anti-angiogenic drugs or vascular targeting agents, can acquire resistance. The limited clinical efficacy might result from the heterogeneous nature of tumors or alternatively from the unique phenotype of tumor vascular cells, widely diverse from so-called ‘normal’ endothelium. Hence, defining the molecular mechanisms driving this diversity might provide a rational basis to design combinatory therapies that should be more effective in avoiding resistance. Herein, we demonstrated that tumor-derived endothelial cells (TECs) isolated from breast and kidney carcinomas retained an endothelial phenotype, but outspread independently of growth factors. Applying small interfering RNA approach, we demonstrated that interleukin (IL)-3, but not vascular endothelial growth factor, released by TECs, supports their autocrine growth and promotes in vivo vessel formation and tumor angiogenesis. Meanwhile, we found that the expression of the membrane-bound kit ligand (mbKitL) depends on IL-3, and it is crucial for adhesion of endothelial progenitor cells (EPCs) and inflammatory cells to TECs. These events required Akt activation. Finally, the finding that depletion of the mbKitL prevented EPC and inflammatory cell trafficking into vascular microenvironment, indicates that, as in bone marrow, the mbKitL can act as a membrane/adhesion molecule for c-Kit-expressing cells. These data provide evidences that an IL-3 autocrine loop can drive a tumor endothelial switch and that targeting IL-3 might confer a significant therapeutic advantage to hamper tumor angiogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Avanzi GC, Brizzi MF, Giannotti J, Ciarletta A, Yang YC, Pegoraro L et al. (1990). M-07e human leukemic factor-dependent cell line provides a rapid and sensitive bioassay for the human cytokines GM-CSF and IL-3. J Cell Physiol 145: 458–464.

    Article  CAS  PubMed  Google Scholar 

  • Baluk P, Morikawa S, Haskell A, Mancuso M, McDonald DM . (2003). Abnormalities of basement membrane on blood vessels and endothelial sprouts in tumors. Am J Pathol 163: 1801–1815.

    Article  PubMed  PubMed Central  Google Scholar 

  • Biancone L, Cantaluppi V, Duò D, Deregibus MC, Torre C, Camussi G . (2004). Role of L-selectin in the vascular homing of peripheral blood-derived endothelial progenitor cells. J Immunol 173: 5268–5274.

    Article  CAS  PubMed  Google Scholar 

  • Brizzi MF, Formato L, Dentelli P, Rosso A, Pavan M, Garbarino G et al. (2001). Interleukin-3 stimulates migration and proliferation of vascular smooth muscle cells: a potential role in atherogenesis. Circulation 103: 549–554.

    Article  CAS  PubMed  Google Scholar 

  • Brizzi MF, Garbarino G, Rossi PR, Pagliardi GL, Arduino C, Avanzi GC et al. (1993). Interleukin 3 stimulates proliferation and triggers endothelial-leukocyte adhesion molecule 1 gene activation of human endothelial cells. J Clin Invest 91: 2887–2892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bussolati B, Assenzio B, Deregibus MC, Camussi G . (2006). The proangiogenic phenotype of human tumor-derived endothelial cells depends on thrombospondin-1 downregulation via phosphatidylinositol 3-kinase/Akt pathway. J Mol Med 84: 852–863.

    Article  CAS  PubMed  Google Scholar 

  • Bussolati B, Deambrosis I, Russo S, Deregibus MC, Camussi G . (2003). Altered angiogenesis and survival in human tumor-derived endothelial cells. FASEB J 17: 1159–1161.

    Article  CAS  PubMed  Google Scholar 

  • Bussolati B, Deregibus MC, Camussi G . (2010). Characterization of molecular and functional alterations of tumor endothelial cells to design anti-angiogenic strategies. Curr Vasc Pharmacol 8: 220–232.

    Article  CAS  PubMed  Google Scholar 

  • Butler JM, Kobayashi H, Rafii S . (2010). Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors. Nat Rev Cancer 10: 138–146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Palma M, Naldini L . (2006). Role of haematopoietic cells and endothelial progenitors in tumour angiogenesis. Biochim Biophys Acta 1766: 159–166.

    CAS  PubMed  Google Scholar 

  • Defilippi P, Rosso A, Dentelli P, Calvi C, Garbarino G, Tarone G et al. (2005). /{beta/}1 Integrin and IL-3R coordinately regulate STAT5 activation and anchora. J Cell Biol 168: 1099–1108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dentelli P, Del Sorbo L, Rosso A, Molinar A, Garbarino G, Camussi G et al. (1999). Human IL-3 stimulates endothelial cell motility and promotes in vivo new vessel formation. J Immunol 163: 2151–2159.

    CAS  PubMed  Google Scholar 

  • Dentelli P, Rosso A, Balsamo A, Colmenares Benedetto S, Zeoli A, Pegoraro M et al. (2007). C-KIT, by interacting with the membrane-bound ligand, recruits endothelial progenitor cells to inflamed endothelium. Blood 109: 4264–4271.

    Article  CAS  PubMed  Google Scholar 

  • Dentelli P, Rosso A, Calvi C, Ghiringhello B, Garbarino G, Camussi G et al. (2004). IL-3 affects endothelial cell-mediated smooth muscle cell recruitment by increasing TGF beta activity: potential role in tumor vessel stabilization. Oncogene 23: 1681–1692.

    Article  CAS  PubMed  Google Scholar 

  • Flanagan JG, Chan DC, Leder P . (1991). Transmembrane form of the kit ligand growth factor is determined by alternative splicing and is missing in the Sld mutant. Cell 4: 1025–1035.

    Article  Google Scholar 

  • Ferrara N, Kerbel RS . (2005). Angiogenesis as a therapeutic target. Nature 438: 967–974.

    Article  CAS  PubMed  Google Scholar 

  • Folkman J . (2007). Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 6: 273–286.

    Article  CAS  PubMed  Google Scholar 

  • Gao D, Nolan D, McDonnell K, Vahdat L, Benezra R, Altorki N et al. (2009). Bone marrow-derived endothelial progenitor cells contribute to the angiogenic switch in tumor growth and metastatic progression. Biochim Biophys Acta 1796: 33–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grange C, Bussolati B, Bruno S, Fonsato V, Sapino A, Camussi G . (2006). Isolation and characterization of human breast tumor-derived endothelial cells. Oncol Rep 15: 381–386.

    CAS  PubMed  Google Scholar 

  • Huang EJ, Nocka KH, Buck J, Besmer P . (1992). Differential expression and processing of two cell associated forms of the kit-ligand: KL-1 and KL-2. Mol Biol Cell 3: 349–362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerbel RS . (2008). Tumor angiogenesis. N Engl J Med 358: 2039–2049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leek RD, Harris AL . (2002). Tumor-associated macrophages in breast cancer. J Mammary Gland Biol Neoplasia 7: 177–189.

    Article  PubMed  Google Scholar 

  • Lin EY, Li JF, Gnatovskiy L, Deng Y, Zhu L, Grzesik DA et al. (2006). Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res 66: 11238–11246.

    Article  CAS  PubMed  Google Scholar 

  • Luster AD, Alon R, von Andrian UH . (2005). Immune cell migration in inflammation: present and future therapeutic targets. Nat Immunol 6: 1182–1190.

    Article  CAS  PubMed  Google Scholar 

  • Mantovani A, Allavena P, Sica A, Balkwill F . (2008). Cancer-related inflammation. Nature 454: 436–444.

    Article  CAS  PubMed  Google Scholar 

  • Matsuda R, Takahashi T, Nakamura S, Sekido Y, Nishida K, Seto M et al. (1993). Expression of the c-kit protein in human solid tumors and in corresponding fetal and adult normal tissues. Am J Pathol 142: 339–346.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nishie A, Ono M, Shono T, Fukushi J, Otsubo M, Onoue H et al. (1999). Macrophage infiltration and heme oxygenase-1 expression correlate with angiogenesis in human gliomas. Clinical Cancer Res 5: 1107–1113.

    CAS  Google Scholar 

  • Nolan DJ, Ciarrocchi A, Mellick AS, Jaggi JS, Bambino K, Gupta S et al. (2007). Bone marrow-derived endothelial progenitor cells are a major determinant of nascent tumor neovascularization. Genes Dev 21: 1546–1558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribatti D, Nico B, Crivellato E, Vacca A . (2007). The structure of the vascular network of tumors. Cancer Lett 248: 18–23.

    Article  CAS  PubMed  Google Scholar 

  • Shchors K, Evan G . (2007). Tumor angiogenesis: cause or consequence of cancer? Cancer Res 67: 7059–7061.

    Article  CAS  PubMed  Google Scholar 

  • Sica A, Rubino L, Mancino A, Larghi P, Porta C, Rimoldi M et al. (2007). Targeting tumour-associated macrophages. Expert Opin Ther Targets 11: 1219–1229.

    Article  CAS  PubMed  Google Scholar 

  • St Croix B, Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E et al. (2000). Genes expressed in human tumor endothelium. Science 289: 1197–1202.

    Article  CAS  PubMed  Google Scholar 

  • Takakura N . (2006). Role of hematopoietic lineage cells as accessory components in blood vessel formation. Cancer Sci 97: 568–574.

    Article  CAS  PubMed  Google Scholar 

  • Tögel F, Hu Z, Weiss K, Isaac J, Lange C, Westenfelder C . (2005). Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. Am J Physiol 289: 31–42.

    Google Scholar 

  • Togliatto G, Trombetta A, Dentelli P, Baragli A, Rosso A, Granata R et al. (2010). Unacylated ghrelin rescues endothelial progenitor cell function in individuals with type 2 diabetes. Diabetes 59: 1016–1025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tonini T, Rossi F, Claudio PP . (2003). Molecular basis of angiogenesis and cancer. Oncogene 22: 6549–6556.

    Article  CAS  PubMed  Google Scholar 

  • Uberti B, Dentelli P, Rosso A, Defilippi P, Brizzi MF . (2010). Inhibition of β1 integrin and IL-3Rβ common subunit interaction hinders tumour angiogenesis. Oncogene 29: 6581–6590.

    Article  CAS  PubMed  Google Scholar 

  • van Beijnum JR, Petersen K, Griffioen AW . (2009). Tumor endothelium is characterized by a matrix remodeling signature. Front Biosci 1: 216–225.

    Article  Google Scholar 

  • Vajkoczy P, Blum S, Lamparter M, Mailhammer R, Erber R, Engelhardt B et al. (2003). Multistep nature of microvascular recruitment of ex vivo-expanded embryonic endothelial progenitor cells during tumor angiogenesis. J Exp Med 197: 1755–1765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verfaillie CM . (2008). Bony endothelium: tumor-mediated transdifferentiation? Cancer Cell 14: 193–194.

    Article  CAS  PubMed  Google Scholar 

  • Weber C, Koenen RR . (2006). Fine-tuning leukocyte responses: towards a chemokine ‘interactome’. Trends Immunol 27: 268–273.

    Article  CAS  PubMed  Google Scholar 

  • Weidner N, Semple JP, Welch WR, Folkman J . (1991). Tumor angiogenesis and metastasis: correlation in invasive breast carcinoma. N Engl J Med 324: 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Yoder MC, Mead LE, Prater D, Krier TR, Mroueh KN, Li F et al. (2007). Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 109: 1801–1809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoder MC, Ingram DA . (2009). The definition of EPCs and other bone marrow cells contributing to neoangiogenesis and tumor growth: is there common ground for understanding the roles of numerous marrow-derived cells in the neoangiogenic process? Biochim Biophys Acta 1796: 50–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeoli A, Dentelli P, Rosso A, Togliatto G, Trombetta A, Damiano L et al. (2008). Interleukin-3 promotes expansion of hemopoietic-derived CD45+ angiogenic cells and their arterial commitment via STAT5 activation. Blood 112: 350–361.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants of the Italian Association for Cancer Research (AIRC) to MFB and GC and by MIUR (Ministero dell’Università e Ricerca Scientifica) to MFB and GC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M F Brizzi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dentelli, P., Rosso, A., Olgasi, C. et al. IL-3 is a novel target to interfere with tumor vasculature. Oncogene 30, 4930–4940 (2011). https://doi.org/10.1038/onc.2011.204

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.204

Keywords

This article is cited by

Search

Quick links