Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

COP9 signalosome subunit 6 stabilizes COP1, which functions as an E3 ubiquitin ligase for 14-3-3σ

Abstract

14-3-3σ, a gene upregulated by p53 in response to DNA damage, exists as part of a positive-feedback loop, which activates p53 and is a human cancer epithelial marker downregulated in various cancer types. 14-3-3σ levels are critical for maintaining p53 activity in response to DNA damage and regulating signal mediators such as Akt. In this study, we identify mammalian constitutive photomorphogenic 1 (COP1) as a novel E3 ubiquitin ligase for targeting 14-3-3σ through proteasomal degradation. We show for the first time that COP9 signalosome subunit 6 (CSN6) associates with COP1 and is involved in 14-3-3σ ubiquitin-mediated degradation. Mechanistic studies show that CSN6 expression leads to stabilization of COP1 through reducing COP1 self-ubiquitination and decelerating COP1's turnover rate. We also show that CSN6-mediated 14-3-3σ ubiquitination is compromised when COP1 is knocked down. Thus, CSN6 mediates 14-3-3σ ubiquitination through enhancing COP1 stability. Subsequently, we show that CSN6 causes 14-3-3σ downregulation, thereby activating Akt and promoting cell survival. Also, CSN6 overexpression leads to increased cell growth, transformation and promotes tumorigenicity. Significantly, 14-3-3σ expression can correct the abnormalities mediated by CSN6 expression. These data suggest that the CSN6-COP1 axis is involved in 14-3-3σ degradation, and that deregulation of this axis will promote cell growth and tumorigenicity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 3
Figure 1
Figure 2
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Bianchi E, Denti S, Catena R, Rossetti G, Polo S, Gasparian S et al. (2003). Characterization of human constitutive photomorphogenesis protein 1, a RING finger ubiquitin ligase that interacts with Jun transcription factors and modulates their transcriptional activity. J Biol Chem 278: 19682–19690.

    Article  CAS  Google Scholar 

  • Chamovitz DA, Wei N, Osterlund MT, von Arnim AG, Staub JM, Matsui M et al. (1996). The COP9 complex, a novel multisubunit nuclear regulator involved in light control of a plant developmental switch. Cell 86: 115–121.

    Article  CAS  Google Scholar 

  • Chan TA, Hermeking H, Lengauer C, Kinzler KW, Vogelstein B . (1999). 14-3-3Sigma is required to prevent mitotic catastrophe after DNA damage. Nature 401: 616–620.

    Article  CAS  Google Scholar 

  • Chen WS, Xu PZ, Gottlob K, Chen ML, Sokol K, Shiyanova T et al. (2001). Growth retardation and increased apoptosis in mice with homozygous disruption of the Akt1 gene. Genes Dev 15: 2203–2208.

    Article  CAS  Google Scholar 

  • Cope GA, Suh GS, Aravind L, Schwarz SE, Zipursky SL, Koonin EV et al. (2002). Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of Nedd8 from Cul1. Science 298: 608–611.

    Article  CAS  Google Scholar 

  • Dentin R, Liu Y, Koo SH, Hedrick S, Vargas T, Heredia J et al. (2007). Insulin modulates gluconeogenesis by inhibition of the coactivator TORC2. Nature 449: 366–369.

    Article  CAS  Google Scholar 

  • Dornan D, Bheddah S, Newton K, Ince W, Frantz GD, Dowd P et al. (2004a). COP1, the negative regulator of p53, is overexpressed in breast and ovarian adenocarcinomas. Cancer Res 64: 7226–7230.

    Article  CAS  Google Scholar 

  • Dornan D, Shimizu H, Mah A, Dudhela T, Eby M, O'Rourke K et al. (2006). ATM engages autodegradation of the E3 ubiquitin ligase COP1 after DNA damage. Science 313: 1122–1126.

    Article  CAS  Google Scholar 

  • Dornan D, Wertz I, Shimizu H, Arnott D, Frantz GD, Dowd P et al. (2004b). The ubiquitin ligase COP1 is a critical negative regulator of p53. Nature 429: 86–92.

    Article  CAS  Google Scholar 

  • Ferguson AT, Evron E, Umbricht CB, Pandita TK, Chan TA, Hermeking H et al. (2000). High frequency of hypermethylation at the 14-3-3 sigma locus leads to gene silencing in breast cancer. Proc Natl Acad Sci USA 97: 6049–6054.

    Article  CAS  Google Scholar 

  • Fu H, Subramanian RR, Masters SC . (2000). 14-3-3 proteins: structure, function, and regulation. Annu Rev Pharmacol Toxicol 40: 617–647.

    Article  CAS  Google Scholar 

  • Gusmaroli G, Figueroa P, Serino G, Deng XW . (2007). Role of the MPN subunits in COP9 signalosome assembly and activity, and their regulatory interaction with arabidopsis Cullin3-based E3 ligases. Plant Cell 19: 564–581.

    Article  CAS  Google Scholar 

  • Hardtke CS, Gohda K, Osterlund MT, Oyama T, Okada K, Deng XW . (2000). HY5 stability and activity in arabidopsis is regulated by phosphorylation in its COP1 binding domain. EMBO J 19: 4997–5006.

    Article  CAS  Google Scholar 

  • Hermeking H, Lengauer C, Polyak K, He TC, Zhang L, Thiagalingam S et al. (1997). 14-3-3 sigma is a p53-regulated inhibitor of G2/M progression. Mol Cell 1: 3–11.

    Article  CAS  Google Scholar 

  • Hoeller D, Hecker CM, Dikic I . (2006). Ubiquitin and ubiquitin-like proteins in cancer pathogenesis. Nat Rev Cancer 6: 776–788.

    Article  CAS  Google Scholar 

  • Horie-Inoue K, Inoue S . (2006). Epigenetic and proteolytic inactivation of 14-3-3sigma in breast and prostate cancers. Semin Cancer Biol 16: 235–239.

    Article  CAS  Google Scholar 

  • Karniol B, Chamovitz DA . (2000). The COP9 signalosome: from light signaling to general developmental regulation and back. Curr Opin Plant Biol 3: 387–393.

    Article  CAS  Google Scholar 

  • Laronga C, Yang HY, Neal C, Lee MH . (2000). Association of the cyclin-dependent kinases and 14-3-3 sigma negatively regulates cell cycle progression. J Biol Chem 275: 23106–23112.

    Article  CAS  Google Scholar 

  • Lee MH, Lozano G . (2006). Regulation of the p53-MDM2 pathway by 14-3-3 sigma and other proteins. Semin Cancer Biol 16: 225–234.

    Article  CAS  Google Scholar 

  • Li DQ, Ohshiro K, Reddy SD, Pakala SB, Lee MH, Zhang Y et al. (2009a). E3 ubiquitin ligase COP1 regulates the stability and functions of MTA1. Proc Natl Acad Sci USA 106: 17493–17498.

    Article  CAS  Google Scholar 

  • Li L, Deng XW . (2003). The COP9 signalosome: an alternative lid for the 26S proteasome? Trends Cell Biol 13: 507–509.

    Article  CAS  Google Scholar 

  • Li Z, Liu JY, Zhang JT . (2009b). 14-3-3sigma, the double-edged sword of human cancers. Am J Transl Res 1: 326–340.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Michaud NR, Fabian JR, Mathes KD, Morrison DK . (1995). 14-3-3 is not essential for Raf-1 function: identification of Raf-1 proteins that are biologically activated in a 14-3-3- and Ras-independent manner. Mol Cell Biol 15: 3390–3397.

    Article  CAS  Google Scholar 

  • Peng Z, Serino G, Deng XW . (2001). Molecular characterization of subunit 6 of the COP9 signalosome and its role in multifaceted developmental processes in arabidopsis. Plant Cell 13: 2393–2407.

    Article  CAS  Google Scholar 

  • Prasad GL, Valverius EM, McDuffie E, Cooper HL . (1992). Complementary DNA cloning of a novel epithelial cell marker protein, HME1, that may be down-regulated in neoplastic mammary cells. Cell Growth Differ 3: 507–513.

    CAS  PubMed  Google Scholar 

  • Qi L, Heredia JE, Altarejos JY, Screaton R, Goebel N, Niessen S et al. (2006). TRB3 links the E3 ubiquitin ligase COP1 to lipid metabolism. Science 312: 1763–1766.

    Article  CAS  Google Scholar 

  • Richardson KS, Zundel W . (2005). The emerging role of the COP9 signalosome in cancer. Mol Cancer Res 3: 645–653.

    Article  CAS  Google Scholar 

  • Savio MG, Rotondo G, Maglie S, Rossetti G, Bender JR, Pardi R . (2008). COP1D, an alternatively spliced constitutive photomorphogenic-1 (COP1) product, stabilizes UV stress-induced c-Jun through inhibition of full-length COP1. Oncogene 27: 2401–2411.

    Article  CAS  Google Scholar 

  • Su CH, Zhao R, Velazquez-Torres G, Chen J, Gully C, Yeung SC et al. (2010). Nuclear export regulation of COP1 by 14-3-3sigma in response to DNA damage. Mol Cancer 9: 243.

    Article  Google Scholar 

  • Su CH, Zhao R, Zhang F, Qu C, Chen B, Feng YH et al. (2011). 14-3-3[sigma] exerts tumor-suppressor activity mediated by regulation of COP1 stability. Cancer Res 71: 884–894.

    Article  CAS  Google Scholar 

  • Urano T, Saito T, Tsukui T, Fujita M, Hosoi T, Muramatsu M et al. (2002). Efp targets 14-3-3 sigma for proteolysis and promotes breast tumour growth. Nature 417: 871–875.

    Article  CAS  Google Scholar 

  • von Arnim AG, Deng XW . (1994). Light inactivation of arabidopsis photomorphogenic repressor COP1 involves a cell-specific regulation of its nucleocytoplasmic partitioning. Cell 79: 1035–1045.

    Article  CAS  Google Scholar 

  • Wang H, Ma LG, Li JM, Zhao HY, Deng XW . (2001). Direct interaction of arabidopsis cryptochromes with COP1 in light control development. Science 294: 154–158.

    Article  CAS  Google Scholar 

  • Wei N, Deng XW . (1992). COP9: a new genetic locus involved in light-regulated development and gene expression in arabidopsis. Plant Cell 4: 1507–1518.

    Article  CAS  Google Scholar 

  • Wei N, Deng XW . (2003). The COP9 signalosome. Annu Rev Cell Dev Biol 19: 261–286.

    Article  CAS  Google Scholar 

  • Wertz IE, O'Rourke KM, Zhang Z, Dornan D, Arnott D, Deshaies RJ et al. (2004). Human de-etiolated-1 regulates c-Jun by assembling a CUL4A ubiquitin ligase. Science 303: 1371–1374.

    Article  CAS  Google Scholar 

  • Yaffe MB, Rittinger K, Volinia S, Caron PR, Aitken A, Leffers H et al. (1997). The structural basis for 14-3-3:phosphopeptide binding specificity. Cell 91: 961–971.

    Article  CAS  Google Scholar 

  • Yang H, Wen YY, Zhao R, Lin YL, Fournier K, Yang HY et al. (2006). DNA damage-induced protein 14-3-3 sigma inhibits protein kinase B/Akt activation and suppresses Akt-activated cancer. Cancer Res 66: 3096–3105.

    Article  CAS  Google Scholar 

  • Yang H, Zhao R, Yang HY, Lee MH . (2005). Constitutively active FOXO4 inhibits Akt activity, regulates p27 Kip1 stability, and suppresses HER2-mediated tumorigenicity. Oncogene 24: 1924–1935.

    Article  CAS  Google Scholar 

  • Yang HY, Wen YY, Chen CH, Lozano G, Lee MH . (2003). 14-3-3 sigma positively regulates p53 and suppresses tumor growth. Mol Cell Biol 23: 7096–7107.

    Article  CAS  Google Scholar 

  • Yang HY, Wen YY, Lin YI, Pham L, Su CH, Yang H et al. (2007). Roles for negative cell regulator 14-3-3sigma in control of MDM2 activities. Oncogene 26: 7355–7362.

    Article  CAS  Google Scholar 

  • Yi C, Deng XW . (2005). COP1—from plant photomorphogenesis to mammalian tumorigenesis. Trends Cell Biol 15: 618–625.

    Article  CAS  Google Scholar 

  • Yi C, Li S, Chen X, Wiemer EA, Wang J, Wei N et al. (2005). Major vault protein, in concert with constitutively photomorphogenic 1, negatively regulates c-Jun-mediated activator protein 1 transcription in mammalian cells. Cancer Res 65: 5835–5840.

    Article  CAS  Google Scholar 

  • Zhao R, Yeung SC, Iwakuma T, Chen J, Su CH, Zhang XC et al. (2011). Impact of COP9 signalosome on MDM2-p53 axis in DNA damage-mediated apoptosis and tumorigenesis. J Clin Invest 121: 851–865.

    Article  CAS  Google Scholar 

  • Zou W, Zhang DE . (2006). The interferon-inducible ubiquitin-protein isopeptide ligase (E3) EFP also functions as an ISG15 E3 ligase. J Biol Chem 281: 3989–3994.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health (NIH) (R01CA089266), Directed Medical Research Programs (DOD SIDA BC062166 to SJY and MHL) and Susan G Komen Breast Cancer Foundation (KG081048). This research was supported in part, by a cancer prevention fellowship for GVT (R25T CA57730). The University of Texas MD Anderson Cancer Center is supported by NIH core Grant CA16672.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S C Yeung or M-H Lee.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, H., Gully, C., Su, CH. et al. COP9 signalosome subunit 6 stabilizes COP1, which functions as an E3 ubiquitin ligase for 14-3-3σ. Oncogene 30, 4791–4801 (2011). https://doi.org/10.1038/onc.2011.192

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.192

Keywords

This article is cited by

Search

Quick links