Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Tumor-suppressor role for the SPOP ubiquitin ligase in signal-dependent proteolysis of the oncogenic co-activator SRC-3/AIB1

Abstract

Steroid receptor co-activator-3 (SRC-3/AIB1) is an oncogene that is amplified and overexpressed in many human cancers. However, the molecular mechanisms that regulate ‘activated SRC-3 oncoprotein’ turnover during tumorigenesis remain to be elucidated. Here, we report that speckle-type POZ protein (SPOP), a cullin 3 (CUL3)-based ubiquitin ligase, is responsible for SRC-3 ubiquitination and proteolysis. SPOP interacts directly with an SRC-3 phospho-degron in a phosphorylation-dependent manner. Casein kinase Iɛ phosphorylates the S102 in this degron and promotes SPOP-dependent turnover of SRC-3. Short hairpin RNA knockdown and overexpression experiments substantiated that the SPOP/CUL3/Rbx1 ubiquitin ligase complex promotes SRC-3 turnover. A systematic analysis of the SPOP genomic locus revealed that a high percentage of genomic loss or loss of heterozygosity occurs at this locus in breast cancers. Furthermore, we demonstrate that restoration of SPOP expression inhibited SRC-3-mediated oncogenic signaling and tumorigenesis, thus positioning SPOP as a tumor suppressor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Anzick SL, Kononen J, Walker RL, Azorsa DO, Tanner MM, Guan XY et al. (1997). AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science 277: 965–968.

    Article  CAS  Google Scholar 

  • Belandia B, Parker MG . (2000). Functional interaction between the p160 coactivator proteins and the transcriptional enhancer factor family of transcription factors. J Biol Chem 275: 30801–30805.

    Article  CAS  Google Scholar 

  • Bennett EJ, Rush J, Gygi SP, Harper JW . (2010). Dynamics of cullin-RING ubiquitin ligase network revealed by systematic quantitative proteomics. Cell 143: 951–965.

    Article  CAS  Google Scholar 

  • Bunce MW, Boronenkov IV, Anderson RA . (2008). Coordinated activation of the nuclear ubiquitin ligase Cul3-SPOP by the generation of phosphatidylinositol 5-phosphate. J Biol Chem 283: 8678–8686.

    Article  CAS  Google Scholar 

  • Chen H, Lin RJ, Schiltz RL, Chakravarti D, Nash A, Nagy L et al. (1997). Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell 90: 569–580.

    Article  CAS  Google Scholar 

  • Chen MH, Wilson CW, Li YJ, Law KK, Lu CS, Gacayan R et al. (2009). Cilium-independent regulation of Gli protein function by Sufu in Hedgehog signaling is evolutionarily conserved. Genes Dev 23: 1910–1928.

    Article  CAS  Google Scholar 

  • Claiborn KC, Sachdeva MM, Cannon CE, Groff DN, Singer JD, Stoffers DA . (2010). Pcif1 modulates Pdx1 protein stability and pancreatic beta cell function and survival in mice. J Clin Invest 120: 3713–3721.

    Article  CAS  Google Scholar 

  • De Marchis L, Cropp C, Sheng ZM, Bargo S, Callahan R . (2004). Candidate target genes for loss of heterozygosity on human chromosome 17q21. Br J Cancer 90: 2384–2389.

    Article  CAS  Google Scholar 

  • Durocher F, Tonin P, Shattuck-Eidens D, Skolnick M, Narod SA, Simard J . (1996). Mutation analysis of the BRCA1 gene in 23 families with cases of cancer of the breast, ovary, and multiple other sites. J Med Genet 33: 814–819.

    Article  CAS  Google Scholar 

  • Eide EJ, Woolf MF, Kang H, Woolf P, Hurst W, Camacho F et al. (2005). Control of mammalian circadian rhythm by CKIepsilon-regulated proteasome-mediated PER2 degradation. Mol Cell Biol 25: 2795–2807.

    Article  CAS  Google Scholar 

  • Furukawa M, He YJ, Borchers C, Xiong Y . (2003). Targeting of protein ubiquitination by BTB-Cullin 3-Roc1 ubiquitin ligases. Nat Cell Biol 5: 1001–1007.

    Article  CAS  Google Scholar 

  • Geyer R, Wee S, Anderson S, Yates J, Wolf DA . (2003). BTB/POZ domain proteins are putative substrate adaptors for cullin 3 ubiquitin ligases. Mol Cell 12: 783–790.

    Article  CAS  Google Scholar 

  • Glass CK, Rosenfeld MG . (2000). The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 14: 121–141.

    CAS  PubMed  Google Scholar 

  • Goel A, Janknecht R . (2004). Concerted activation of ETS protein ER81 by p160 coactivators, the acetyltransferase p300 and the receptor tyrosine kinase HER2/Neu. J Biol Chem 279: 14909–14916.

    Article  CAS  Google Scholar 

  • Halachmi S, Marden E, Martin G, MacKay H, Abbondanza C, Brown M . (1994). Estrogen receptor-associated proteins: possible mediators of hormone-induced transcription. Science 264: 1455–1458.

    Article  CAS  Google Scholar 

  • Hernandez-Munoz I, Lund AH, van der Stoop P, Boutsma E, Muijrers I, Verhoeven E et al. (2005). Stable X chromosome inactivation involves the PRC1 Polycomb complex and requires histone MACROH2A1 and the CULLIN3/SPOP ubiquitin E3 ligase. Proc Natl Acad Sci USA 102: 7635–7640.

    Article  CAS  Google Scholar 

  • Hershko A, Ciechanover A . (1998). The ubiquitin system. Annu Rev Biochem 67: 425–479.

    Article  CAS  Google Scholar 

  • Hong H, Kohli K, Trivedi A, Johnson DL, Stallcup MR . (1996). GRIP1, a novel mouse protein that serves as a transcriptional coactivator in yeast for the hormone binding domains of steroid receptors. Proc Natl Acad Sci USA 93: 4948–4952.

    Article  CAS  Google Scholar 

  • Jin J, Ang XL, Shirogane T, Wade Harper J . (2005). Identification of substrates for F-box proteins. Methods Enzymol 399: 287–309.

    Article  CAS  Google Scholar 

  • Jin J, Cardozo T, Lovering RC, Elledge SJ, Pagano M, Harper JW . (2004). Systematic analysis and nomenclature of mammalian F-box proteins. Genes Dev 18: 2573–2580.

    Article  CAS  Google Scholar 

  • Kajiro M, Hirota R, Nakajima Y, Kawanowa K, So-ma K, Ito I et al. (2009). The ubiquitin ligase CHIP acts as an upstream regulator of oncogenic pathways. Nat Cell Biol 11: 312–319.

    Article  CAS  Google Scholar 

  • Kuang SQ, Liao L, Zhang H, Lee AV, O'Malley BW, Xu J . (2004). AIB1/SRC-3 deficiency affects insulin-like growth factor I signaling pathway and suppresses v-Ha-ras-induced breast cancer initiation and progression in mice. Cancer Res 64: 1875–1885.

    Article  CAS  Google Scholar 

  • Kumar RPD, O'Malley BW . (2008). NR Coregulators and Human Diseases. World Scientific: Singapore; London, xi, 602 p.

    Book  Google Scholar 

  • Kwon JE, La M, Oh KH, Oh YM, Kim GR, Seol JH et al. (2006). BTB domain-containing speckle-type POZ protein (SPOP) serves as an adaptor of Daxx for ubiquitination by Cul3-based ubiquitin ligase. J Biol Chem 281: 12664–12672.

    Article  CAS  Google Scholar 

  • Lee DF, Kuo HP, Liu M, Chou CK, Xia W, Du Y et al. (2009). KEAP1 E3 Ligase-mediated downregulation of NF-kappaB signaling by targeting IKKbeta. Mol Cell 36: 131–140.

    Article  CAS  Google Scholar 

  • Lee SK, Kim HJ, Na SY, Kim TS, Choi HS, Im SY et al. (1998). Steroid receptor coactivator-1 coactivates activating protein-1-mediated transactivations through interaction with the c-Jun and c-Fos subunits. J Biol Chem 273: 16651–16654.

    Article  CAS  Google Scholar 

  • Lerebours F, Bertheau P, Bieche I, Driouch K, De The H, Hacene K et al. (2002). Evidence of chromosome regions and gene involvement in inflammatory breast cancer. Int J Cancer 102: 618–622.

    Article  CAS  Google Scholar 

  • Li C, Liang YY, Feng XH, Tsai SY, Tsai MJ, O'Malley BW . (2008a). Essential phosphatases and a phospho-degron are critical for regulation of SRC-3/AIB1 coactivator function and turnover. Mol Cell 31: 835–849.

    Article  CAS  Google Scholar 

  • Li C, Wu RC, Amazit L, Tsai SY, Tsai MJ, O'Malley BW . (2007a). Specific amino acid residues in the basic helix-loop-helix domain of SRC-3 are essential for its nuclear localization and proteasome-dependent turnover. Mol Cell Biol 27: 1296–1308.

    Article  Google Scholar 

  • Li H, Gomes PJ, Chen JD . (1997). RAC3, a steroid/nuclear receptor-associated coactivator that is related to SRC-1 and TIF2. Proc Natl Acad Sci USA 94: 8479–8484.

    Article  CAS  Google Scholar 

  • Li LB, Louie MC, Chen HW, Zou JX . (2008b). Proto-oncogene ACTR/AIB1 promotes cancer cell invasion by up-regulating specific matrix metalloproteinase expression. Cancer Lett 261: 64–73.

    Article  CAS  Google Scholar 

  • Li X, Amazit L, Long W, Lonard DM, Monaco JJ, O'Malley BW . (2007b). Ubiquitin- and ATP-independent proteolytic turnover of p21 by the REGgamma-proteasome pathway. Mol Cell 26: 831–842.

    Article  Google Scholar 

  • Li X, Lonard DM, Jung SY, Malovannaya A, Feng Q, Qin J et al. (2006). The SRC-3/AIB1 coactivator is degraded in a ubiquitin- and ATP-independent manner by the REGgamma proteasome. Cell 124: 381–392.

    Article  CAS  Google Scholar 

  • Liu J, Ghanim M, Xue L, Brown CD, Iossifov I, Angeletti C et al. (2009). Analysis of Drosophila segmentation network identifies a JNK pathway factor overexpressed in kidney cancer. Science 323: 1218–1222.

    Article  CAS  Google Scholar 

  • Louie MC, Zou JX, Rabinovich A, Chen HW . (2004). ACTR/AIB1 functions as an E2F1 coactivator to promote breast cancer cell proliferation and antiestrogen resistance. Mol Cell Biol 24: 5157–5171.

    Article  CAS  Google Scholar 

  • Luo W, Peterson A, Garcia BA, Coombs G, Kofahl B, Heinrich R et al. (2007). Protein phosphatase 1 regulates assembly and function of the beta-catenin degradation complex. EMBO J 26: 1511–1521.

    Article  CAS  Google Scholar 

  • McKenna NJ, Lanz RB, O'Malley BW . (1999). Nuclear receptor coregulators: cellular and molecular biology. Endocr Rev 20: 321–344.

    CAS  PubMed  Google Scholar 

  • McKenna NJ, O'Malley BW . (2002). Combinatorial control of gene expression by nuclear receptors and coregulators. Cell 108: 465–474.

    Article  CAS  Google Scholar 

  • Michaelson JS, Bader D, Kuo F, Kozak C, Leder P . (1999). Loss of Daxx, a promiscuously interacting protein, results in extensive apoptosis in early mouse development. Genes Dev 13: 1918–1923.

    Article  CAS  Google Scholar 

  • O'Malley BW, Kumar R . (2009). Nuclear receptor coregulators in cancer biology. Cancer Res 69: 8217–8222.

    Article  CAS  Google Scholar 

  • Onate SA, Tsai SY, Tsai MJ, O'Malley BW . (1995). Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 270: 1354–1357.

    Article  CAS  Google Scholar 

  • Orsetti B, Courjal F, Cuny M, Rodriguez C, Theillet C . (1999). 17q21–q25 aberrations in breast cancer: combined allelotyping and CGH analysis reveals 5 regions of allelic imbalance among which two correspond to DNA amplification. Oncogene 18: 6262–6270.

    Article  CAS  Google Scholar 

  • Osborne CK, Bardou V, Hopp TA, Chamness GC, Hilsenbeck SG, Fuqua SA et al. (2003). Role of the estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu in tamoxifen resistance in breast cancer. J Natl Cancer Inst 95: 353–361.

    Article  CAS  Google Scholar 

  • Petroski MD, Deshaies RJ . (2005). Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol 6: 9–20.

    Article  CAS  Google Scholar 

  • Pickart CM . (2001). Mechanisms underlying ubiquitination. Annu Rev Biochem 70: 503–533.

    Article  CAS  Google Scholar 

  • Pintard L, Willis JH, Willems A, Johnson JL, Srayko M, Kurz T et al. (2003). The BTB protein MEL-26 is a substrate-specific adaptor of the CUL-3 ubiquitin-ligase. Nature 425: 311–316.

    Article  CAS  Google Scholar 

  • Planas-Silva MD, Shang Y, Donaher JL, Brown M, Weinberg RA . (2001). AIB1 enhances estrogen-dependent induction of cyclin D1 expression. Cancer Res 61: 3858–3862.

    CAS  PubMed  Google Scholar 

  • Qin L, Liao L, Redmond A, Young L, Yuan Y, Chen H et al. (2008). The AIB1 oncogene promotes breast cancer metastasis by activation of PEA3-mediated matrix metalloproteinase 2 (MMP2) and MMP9 expression. Mol Cell Biol 28: 5937–5950.

    Article  CAS  Google Scholar 

  • Radford DM, Fair KL, Phillips NJ, Ritter JH, Steinbrueck T, Holt MS et al. (1995). Allelotyping of ductal carcinoma in situ of the breast: deletion of loci on 8p, 13q, 16q, 17p and 17q. Cancer Res 55: 3399–3405.

    CAS  PubMed  Google Scholar 

  • Rivers A, Gietzen KF, Vielhaber E, Virshup DM . (1998). Regulation of casein kinase I epsilon and casein kinase I delta by an in vivo futile phosphorylation cycle. J Biol Chem 273: 15980–15984.

    Article  CAS  Google Scholar 

  • Sakanaka C . (2002). Phosphorylation and regulation of beta-catenin by casein kinase I epsilon. J Biochem 132: 697–703.

    Article  CAS  Google Scholar 

  • Shirogane T, Jin J, Ang XL, Harper JW . (2005). SCFbeta-TRCP controls clock-dependent transcription via casein kinase 1-dependent degradation of the mammalian period-1 (Per1) protein. J Biol Chem 280: 26863–26872.

    Article  CAS  Google Scholar 

  • Takeshita A, Cardona GR, Koibuchi N, Suen CS, Chin WW . (1997). TRAM-1, a novel 160-kDa thyroid hormone receptor activator molecule, exhibits distinct properties from steroid receptor coactivator-1. J Biol Chem 272: 27629–27634.

    Article  CAS  Google Scholar 

  • Tang J, Qu LK, Zhang J, Wang W, Michaelson JS, Degenhardt YY et al. (2006). Critical role for Daxx in regulating Mdm2. Nat Cell Biol 8: 855–862.

    Article  CAS  Google Scholar 

  • Torchia J, Rose DW, Inostroza J, Kamei Y, Westin S, Glass CK et al. (1997). The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature 387: 677–684.

    Article  CAS  Google Scholar 

  • Torres-Arzayus MI, Font de Mora J, Yuan J, Vazquez F, Bronson R, Rue M et al. (2004). High tumor incidence and activation of the PI3K/AKT pathway in transgenic mice define AIB1 as an oncogene. Cancer Cell 6: 263–274.

    Article  CAS  Google Scholar 

  • Voegel JJ, Heine MJ, Zechel C, Chambon P, Gronemeyer H . (1996). TIF2, a 160 kDa transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors. EMBO J 15: 3667–3675.

    Article  CAS  Google Scholar 

  • Wang Z, Rose DW, Hermanson O, Liu F, Herman T, Wu W et al. (2000). Regulation of somatic growth by the p160 coactivator p/CIP. Proc Natl Acad Sci USA 97: 13549–13554.

    Article  CAS  Google Scholar 

  • Welcker M, Clurman BE . (2008). FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat Rev Cancer 8: 83–93.

    Article  CAS  Google Scholar 

  • Werbajh S, Nojek I, Lanz R, Costas MA . (2000). RAC-3 is a NF-kappa B coactivator. FEBS Lett 485: 195–199.

    Article  CAS  Google Scholar 

  • Wu RC, Feng Q, Lonard DM, O'Malley BW . (2007). SRC-3 coactivator functional lifetime is regulated by a phospho-dependent ubiquitin time clock. Cell 129: 1125–1140.

    Article  CAS  Google Scholar 

  • Xu J, Liao L, Ning G, Yoshida-Komiya H, Deng C, O'Malley BW . (2000). The steroid receptor coactivator SRC-3 (p/CIP/RAC3/AIB1/ACTR/TRAM-1) is required for normal growth, puberty, female reproductive function, and mammary gland development. Proc Natl Acad Sci USA 97: 6379–6384.

    Article  CAS  Google Scholar 

  • Xu L, Wei Y, Reboul J, Vaglio P, Shin TH, Vidal M et al. (2003). BTB proteins are substrate-specific adaptors in an SCF-like modular ubiquitin ligase containing CUL-3. Nature 425: 316–321.

    Article  CAS  Google Scholar 

  • Yan J, Erdem H, Li R, Cai Y, Ayala G, Ittmann M et al. (2008). Steroid receptor coactivator-3/AIB1 promotes cell migration and invasiveness through focal adhesion turnover and matrix metalloproteinase expression. Cancer Res 68: 5460–5468.

    Article  CAS  Google Scholar 

  • Yan J, Yu CT, Ozen M, Ittmann M, Tsai SY, Tsai MJ . (2006). Steroid receptor coactivator-3 and activator protein-1 coordinately regulate the transcription of components of the insulin-like growth factor/AKT signaling pathway. Cancer Res 66: 11039–11046.

    Article  CAS  Google Scholar 

  • Yi P, Feng Q, Amazit L, Lonard DM, Tsai SY, Tsai MJ et al. (2008). Atypical protein kinase C regulates dual pathways for degradation of the oncogenic coactivator SRC-3/AIB1. Mol Cell 29: 465–476.

    Article  CAS  Google Scholar 

  • Yu C, York B, Wang S, Feng Q, Xu J, O'Malley BW . (2007). An essential function of the SRC-3 coactivator in suppression of cytokine mRNA translation and inflammatory response. Mol Cell 25: 765–778.

    Article  CAS  Google Scholar 

  • Zhou G, Hashimoto Y, Kwak I, Tsai SY, Tsai MJ . (2003). Role of the steroid receptor coactivator SRC-3 in cell growth. Mol Cell Biol 23: 7742–7755.

    Article  CAS  Google Scholar 

  • Zhou HJ, Yan J, Luo W, Ayala G, Lin SH, Erdem H et al. (2005). SRC-3 is required for prostate cancer cell proliferation and survival. Cancer Res 65: 7976–7983.

    Article  CAS  Google Scholar 

  • Zhuang M, Calabrese MF, Liu J, Waddell MB, Nourse A, Hammel M et al. (2009). Structures of SPOP-substrate complexes: insights into molecular architectures of BTB-Cul3 ubiquitin ligases. Mol Cell 36: 39–50.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ming-Jer Tsai and Sophia Y Tsai for their suggestions and Dr Kevin White (University of Chicago) for the monoclonal antibodies against SPOP. This work was supported by funding from State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute and grants (81072163) from National Natural Science Foundation of China (CL), and NIH HD-08188 and HD-07857 grants (BWO).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C Li or B W O'Malley.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C., Ao, J., Fu, J. et al. Tumor-suppressor role for the SPOP ubiquitin ligase in signal-dependent proteolysis of the oncogenic co-activator SRC-3/AIB1. Oncogene 30, 4350–4364 (2011). https://doi.org/10.1038/onc.2011.151

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.151

Keywords

This article is cited by

Search

Quick links