Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Sumoylation of MEL1S at lysine 568 and its interaction with CtBP facilitates its repressor activity and the blockade of G-CSF-induced myeloid differentiation

Abstract

MEL1 (MDS1/EVI1-like gene 1/PRDM16), which was identified as a gene near the chromosomal breakpoint in t(1;3)(p36;q21)-positive human acute myeloid leukemia cells, belongs to the PRDI-BF1-RIZ1 homologous (PR) domain (PRDM) family of transcription repressors. The short form of MEL1 (MEL1S), which lacks the PR-domain at the N-terminus, is the main form expressed in t(1;3)(p36;q21)-positive acute myeloid leukemia cells. The overexpression of MEL1S blocks granulocyte colony-stimulating factor (G-CSF)-induced myeloid differentiation in interleukin-3-dependent murine myeloid L-G3 cells. In this study, we show that treatment with the histone deacetylase inhibitor trichostatin A abolished the blockade of myeloid differentiation in L-G3 cells overexpressing MEL1S. The expression of MEL1S containing mutated CtBP-interacting motif (CIM) in L-G3 cells still blocked the myeloid differentiation induced by G-CSF. We found that the small ubiquitin-related modifier (SUMO) motif (SM) at lysine 568 (VKAE) adjacent to the CIM was necessary to obtain the maximum transcriptional repressor activity of MEL1S. L-G3 cells expressing MEL1S, and bearing mutated CIM and SM differentiated into granulocytes in response to G-CSF; this indicated that both the SUMO modification at lysine 568 and CtBP binding were required for MEL1S-mediated transcriptional repression and blockade of differentiation, which might be relevant for the process of leukemogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Bloomfield CD, Garson OM, Volin L, Knuutila S, de la Chapelle A . (1985). t(1;3)(p36;q21) in acute nonlymphocytic leukemia: a new cytogenic-clinicopathologic association. Blood 66: 1409–1413.

    CAS  PubMed  Google Scholar 

  • Chinnadurai G . (2007). Transcriptional regulation by C-terminal binding proteins. Int J Biochem Cell Biol 39: 1593–1607.

    Article  CAS  Google Scholar 

  • DuBridge RB, Tang P, Hsia HC, Phai-Mooi L, Miller JH, Calos MP . (1987). Analysis of mutation in human cells by using Epstein-Barr virus shuttle system. Mol Cell Biol 7: 379–387.

    Article  CAS  PubMed  Google Scholar 

  • Friedman AD, Krieder BL, Venturelli D, Rovera G . (1991). Transcriptional regulation of two myeloid-specific genes, myeloperoxidase and lactoferrin, during differentiation of the murine cell line 32Dcl3. Blood 78: 2426–2432.

    CAS  PubMed  Google Scholar 

  • Giorgino F, de Robertis O, Laviola L, Montrone C, Perrini S, McCowen K et al. (2000). The sentrin-conjugating enzyme mUBC9 interacts with transient transfection GLUT4 and GLUT1 glucose transporters and regulates transporter levels in skeletal muscle cells. Proc Natl Acad Sci USA 97: 1125–1130.

    Article  CAS  PubMed  Google Scholar 

  • Gluzman Y . (1981). SV40-transformed simian cells support the replication of early SV40 mutants. Cell 23: 175–182.

    Article  CAS  PubMed  Google Scholar 

  • Greenberger JS, Sakakeeny MA, Humphries RK, Eaves CJ, Eckner RJ . (1983). Demonstration of permanent factor-dependent multipotential (erythroid/neutrophil/basophil) hematopoietic progenitor cell line. Proc Natl Acad Sci USA 80: 2931–2935.

    Article  CAS  PubMed  Google Scholar 

  • Izutsu K, Kurokawa M, Imai Y, Maki K, Mitani K, Hirai H . (2001). The corepressor CtBP interacts with Evi-1 to repress transforming growth factor beta signaling. Blood 97: 2815–2822.

    Article  CAS  Google Scholar 

  • Kagey MH, Melhuish TA, Wotton D . (2003). The polycomb protein Pc2 is a SUMO E3. Cell 113: 127–137.

    Article  CAS  PubMed  Google Scholar 

  • Kajimura S, Seale P, Kubota K, Lunsford E, Frangioni JV, Gygi SP et al. (2009). Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-b transcriptional complex. Nature 460: 1154–1159.

    Article  CAS  PubMed  Google Scholar 

  • Kajimura S, Seale P, Tomaru T, Erdjument-Bromage H, Cooper MP, Ruas JL et al. (2008). Regulation of the brown and white fat gene programs through a PRDM16/CtBP transcriptional complex. Genes Dev 22: 1397–1409.

    Article  CAS  PubMed  Google Scholar 

  • Kinashi T, Lee HL, Ogawa M, Tohyama K, Tashiro K, Fukunaga R et al. (1991). Premature expression of the macrophage colony-stimulating factor receptor on a multipotential stem cell line does not alter differentiation lineages controlled by stromal cells used for coculture. J Exp Med 173: 1267–1279.

    Article  CAS  PubMed  Google Scholar 

  • Kuppuswamy M, Vijayalingam S, Zhao LJ, Zhou Y, Subramanian T, Ryerse J et al. (2008). Role of the PLDLS-binding cleft region of CtBP1 in recruitment of core and auxiliary components of the corepressor complex. Mol Cell Biol 28: 269–281.

    Article  CAS  Google Scholar 

  • Long J, Zuo D, Park M . (2005). Pc2-mediated SUMOylation of Smad-interacting protein 1 attenuates transcriptional repression of E-cadherin. J Biol Chem 280: 35477–35489.

    Article  CAS  PubMed  Google Scholar 

  • Maki K, Yamagata T, Mitani K . (2008). Role of the RUNX1-EVI1 fusion gene in leukemogenesis. Cancer Sci 99: 1878–1883.

    CAS  PubMed  Google Scholar 

  • Migliaccio G, Migliaccio AR, Kreider BL, Rovera G, Adamson JW . (1989). Transcriptional regulation of two myeloid-specific genes, myeloperoxidase and lactoferrin, during differentiation of the murine cell line 32D C13. J Cell Biol 109: 833–841.

    Article  CAS  PubMed  Google Scholar 

  • Mitani K . (2004). Molecular mechanisms of leukemogenesis by AML1/EVI-1. Oncogene 23: 4263–4269.

    Article  CAS  PubMed  Google Scholar 

  • Mochizuki N, Shimizu S, Nagasawa T, Tanaka H, Taniwaki M, Yokota J et al. (2000). A novel gene, MEL1, mapped to 1p36.3 is highly homologous to the MDS1/EVI1 gene and is transcriptionally activated in t(1;3)(p36;q21)-positive leukemia cells. Blood 96: 3209–3214.

    CAS  PubMed  Google Scholar 

  • Moir DJ, Jones PAE, Pearson J, Ducan JR, Cook P, Buckle VJ . (1984). A new translocation, t(1;3)(p36;q21), in myelodysplastic disorders. Blood 64: 553–555.

    CAS  PubMed  Google Scholar 

  • Morishita K . (2007). Leukemogenesis of the EVI1/MEL1 gene family. Int J Hematol 85: 279–286.

    Article  CAS  PubMed  Google Scholar 

  • Morita Y, Kanei-Ishii C, Nomura T, Ishii S . (2005). TRAF7 sequesters c-Myb to the cytoplasm by stimulating its SUMOylation. Mol Biol Cell 16: 5433–5444.

    Article  CAS  PubMed  Google Scholar 

  • Nishikata I, Sasaki H, Iga M, Tateno Y, Imayoshi S, Asou N et al. (2003). A novel EVI1 gene family, MEL1, lacking a PR domain (MEL1S) is expressed mainly in t(1;3)(p36;q21)-positive AML and blocks G-CSF-induced myeloid differentiation. Blood 102: 3323–3332.

    Article  CAS  PubMed  Google Scholar 

  • Pear WS, Nolan GP, Scott ML, Baltimore D . (1993). Production of high-titer helper-free retroviruses by transient transfection. Proc Natl Acad Sci USA 90: 8392–8396.

    Article  CAS  Google Scholar 

  • Perdomo J, Verger A, Turner J, Crossley M . (2005). Role for SUMO modification in facilitating transcriptional repression by BKLF. Mol Cell Biol 25: 1549–1559.

    Article  CAS  PubMed  Google Scholar 

  • Quinlan KGR, Nardini M, Verger A, Francescato P, Yaswen P, Corda D et al. (2006). Specific recognition of ZNF217 and other zinc finger proteins at a surface groove of C-terminal binding proteins. Mol Cell Biol 26: 8159–8172.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez MS, Dargemont C, Hay RT . (2001). SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. J Biol Chem 276: 12654–12659.

    Article  CAS  PubMed  Google Scholar 

  • Schaeper U, Boyd JM, Verma S, Uhlmann E, Subramanian T, Chinnadurai G . (1995). Molecular cloning and characterization of a cellular phosphorprotein that interacts with a conserved C-terminal domain of adenovirus E1A involved in negative modulation of oncogenic transformation. Proc Natl Acad Sci USA 92: 10467–10471.

    Article  CAS  Google Scholar 

  • Seale P, Bjok B, Yang W, Kajimura S, Chin S, Kuang S et al. (2008). PRDM16 controls a brown fat/skeletal muscle switch. Nature 454: 961–967.

    Article  CAS  PubMed  Google Scholar 

  • Shimahara A, Yamakawa N, Nishikata I, Morishita K . (2010). Acetylation of lysine 564 Adjacent to the C-terminal binding protein-binding motif in EVI1 is crucial for transcriptional activation of GATA2. J Biol Chem 285: 16967–16977.

    Article  CAS  PubMed  Google Scholar 

  • Shimizu S, Suzukawa K, Kodera T, Nagasawa T, Abe T, Taniwaki M et al. (2000). Identification of breakpoint cluster regions at 1p36.3 and 3q21 in hematologic malignancies with t(1;3)(p36;q21). Genes Chromosomes Cancer 27: 229–238.

    Article  CAS  PubMed  Google Scholar 

  • Tillmanns S, Otto C, Jaffray E, Roure CD, Bakri Y, Vanhille L et al. (2007). SUMO modification regulates MafB-driven macrophage differentiation by enabling Myb-dependent transcriptional repression. Mol Cell Biol 27: 5554–5564.

    Article  CAS  PubMed  Google Scholar 

  • Turner J, Crossley M . (1998). Cloning and characterization of mCtBP2, a co-repressor that associates with basic Krüppel-like factor and other mammalian transcriptional regulators. EMBO J 17: 5129–5140.

    Article  CAS  PubMed  Google Scholar 

  • Welborn JL, Lewis JP, Jenks H, Walling P . (1987). Diagnostic and prognostic signification of t(1;3)(p36;q21) in the disorders of hematopoiesis. Cancer Genet Cytogenet 28: 277–285.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Grants-in-Aid for Scientific Research of Priority Area from the Ministry of Education, Culture, Sports, Science and Technology in Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Morishita.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishikata, I., Nakahata, S., Saito, Y. et al. Sumoylation of MEL1S at lysine 568 and its interaction with CtBP facilitates its repressor activity and the blockade of G-CSF-induced myeloid differentiation. Oncogene 30, 4194–4207 (2011). https://doi.org/10.1038/onc.2011.132

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.132

Keywords

This article is cited by

Search

Quick links