Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Nucleophosmin and its complex network: a possible therapeutic target in hematological diseases

Abstract

Nucleophosmin (NPM, also known as B23, numatrin or NO38) is a ubiquitously expressed phosphoprotein belonging to the nucleoplasmin family of chaperones. NPM is mainly localized in the nucleolus where it exerts many of its functions, but a proportion of the protein continuously shuttles between the nucleus and the cytoplasm. A growing number of cellular proteins have been described as physical interactors of NPM, and consequently, NPM is thought to have a relevant role in diverse cellular functions, including ribosome biogenesis, centrosome duplication, DNA repair and response to stress. NPM has been implicated in the pathogenesis of several human malignancies and intriguingly, it has been described both as an activating oncogene and a tumor suppressor, depending on cell type and protein levels. In fact, increased NPM expression is associated with different types of solid tumors whereas an impairment of NPM function is characteristic of a subgroup of hematolologic malignancies. A large body of experimental evidence links the deregulation of specific NPM functions to cellular transformation, yet the molecular mechanisms through which NPM contributes to tumorigenesis remain elusive. In this review, we have summarized current knowledge concerning NPM functions, and attempted to interpret its multifaceted and sometimes apparently contradictory activities in the context of both normal cellular homeostasis and neoplastic transformation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Adon AM, Zeng X, Harrison MK, Sannem S, Kiyokawa H, Kaldis P et al. (2009). Cdk2 and Cdk4 regulate the centrosome cycle and are critical mediators of centrosome amplification in p53-null cells. Mol Cell Biol 30: 694–710.

    PubMed  PubMed Central  Google Scholar 

  • Ahn JY, Liu X, Cheng D, Peng J, Chan PK, Wade PA et al. (2005). Nucleophosmin/B23, a nuclear PI(3,4,5)P(3) receptor, mediates the antiapoptotic actions of NGF by inhibiting CAD. Mol Cell 18: 435–445.

    CAS  PubMed  Google Scholar 

  • Albiero E, Madeo D, Bolli N, Giaretta I, Bona ED, Martelli MF et al. (2007). Identification and functional characterization of a cytoplasmic nucleophosmin leukaemic mutant generated by a novel exon-11 NPM1 mutation. Leukemia 21: 1099–1103.

    CAS  PubMed  Google Scholar 

  • Alcalay M, Tiacci E, Bergomas R, Bigerna B, Venturini E, Minardi SP et al. (2005). Acute myeloid leukemia bearing cytoplasmic nucleophosmin (NPMc+ AML) shows a distinct gene expression profile characterized by up-regulation of genes involved in stem-cell maintenance. Blood 106: 899–902.

    CAS  PubMed  Google Scholar 

  • Amin HM, Lai R . (2007). Pathobiology of ALK+ anaplastic large-cell lymphoma. Blood 110: 2259–2267.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amin MA, Matsunaga S, Uchiyama S, Fukui K . (2008). Nucleophosmin is required for chromosome congression, proper mitotic spindle formation, and kinetochore-microtubule attachment in HeLa cells. FEBS Lett 582: 3839–3844.

    CAS  PubMed  Google Scholar 

  • Andersen MT, Andersen MK, Christiansen DH, Pedersen-Bjergaard J . (2008). NPM1 mutations in therapy-related acute myeloid leukemia with uncharacteristic features. Leukemia 22: 951–955.

    CAS  PubMed  Google Scholar 

  • Appella E, Anderson CW . (2001). Post-translational modifications and activation of p53 by genotoxic stresses. Eur J Biochem 268: 2764–2772.

    CAS  PubMed  Google Scholar 

  • Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N et al. (2006). Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444: 633–637.

    Article  CAS  PubMed  Google Scholar 

  • Berger R, Busson M, Baranger L, Helias C, Lessard M, Dastugue N et al. (2006). Loss of the NPM1 gene in myeloid disorders with chromosome 5 rearrangements. Leukemia 20: 319–321.

    CAS  PubMed  Google Scholar 

  • Bertwistle D, Sugimoto M, Sherr CJ . (2004). Physical and functional interactions of the Arf tumor suppressor protein with nucleophosmin/B23. Mol Cell Biol 24: 985–996.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bolli N, De Marco MF, Martelli MP, Bigerna B, Pucciarini A, Rossi R et al. (2009). A dose-dependent tug of war involving the NPM1 leukaemic mutant, nucleophosmin, and ARF. Leukemia 23: 501–509.

    CAS  PubMed  Google Scholar 

  • Bolli N, Nicoletti I, De Marco MF, Bigerna B, Pucciarini A, Mannucci R et al. (2007). Born to be exported: COOH-terminal nuclear export signals of different strength ensure cytoplasmic accumulation of nucleophosmin leukemic mutants. Cancer Res 67: 6230–6237.

    CAS  PubMed  Google Scholar 

  • Bolli N, Payne EM, Grabher C, Lee JS, Johnston AB, Falini B et al. (2010). Expression of the cytoplasmic NPM1 mutant (NPMc+) causes the expansion of hematopoietic cells in zebrafish. Blood 115: 3329–3340.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bonetti P, Davoli T, Sironi C, Amati B, Pelicci PG, Colombo E . (2008). Nucleophosmin and its AML-associated mutant regulate c-Myc turnover through Fbw7 gamma. J Cell Biol 182: 19–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Borer RA, Lehner CF, Eppenberger HM, Nigg EA . (1989). Major nucleolar proteins shuttle between nucleus and cytoplasm. Cell 56: 379–390.

    CAS  PubMed  Google Scholar 

  • Borggrefe T, Wabl M, Akhmedov AT, Jessberger R . (1998). A B-cell-specific DNA recombination complex. J Biol Chem 273: 17025–17035.

    CAS  PubMed  Google Scholar 

  • Bothner B, Lewis WS, DiGiammarino EL, Weber JD, Bothner SJ, Kriwacki RW . (2001). Defining the molecular basis of Arf and Hdm2 interactions. J Mol Biol 314: 263–277.

    CAS  PubMed  Google Scholar 

  • Brady SN, Yu Y, Maggi Jr LB, Weber JD . (2004). ARF impedes NPM/B23 shuttling in an Mdm2-sensitive tumor suppressor pathway. Mol Cell Biol 24: 9327–9338.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown P, McIntyre E, Rau R, Meshinchi S, Lacayo N, Dahl G et al. (2007). The incidence and clinical significance of nucleophosmin mutations in childhood AML. Blood 110: 979–985.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burnett AK, Hills RK, Green C, Jenkinson S, Koo K, Patel Y et al. (2009). The impact on outcome of the addition of all-trans retinoic acid to intensive chemotherapy in younger patients with nonacute promyelocytic acute myeloid leukemia: overall results and results in genotypic subgroups defined by mutations in NPM1, FLT3, and CEBPA. Blood 115: 948–956.

    PubMed  Google Scholar 

  • Caudill JS, Sternberg AJ, Li CY, Tefferi A, Lasho TL, Steensma DP . (2006). C-terminal nucleophosmin mutations are uncommon in chronic myeloid disorders. Br J Haematol 133: 638–641.

    CAS  PubMed  Google Scholar 

  • Cazzaniga G, Dell'Oro MG, Mecucci C, Giarin E, Masetti R, Rossi V et al. (2005). Nucleophosmin mutations in childhood acute myelogenous leukemia with normal karyotype. Blood 106: 1419–1422.

    CAS  PubMed  Google Scholar 

  • Chang JH, Lin JY, Wu MH, Yung BY . (1998). Evidence for the ability of nucleophosmin/B23 to bind ATP. Biochem J 329 (Part 3): 539–544.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng K, Grisendi S, Clohessy JG, Majid S, Bernardi R, Sportoletti P et al. (2007). The leukemia-associated cytoplasmic nucleophosmin mutant is an oncogene with paradoxical functions: Arf inactivation and induction of cellular senescence. Oncogene 26: 7391–7400.

    CAS  PubMed  Google Scholar 

  • Cheng K, Sportoletti P, Ito K, Clohessy JG, Teruya-Feldstein J, Kutok JL et al. (2009). The cytoplasmic NPM mutant induces myeloproliferation in a transgenic mouse model. Blood 115: 3341–3345.

    PubMed  Google Scholar 

  • Chiarle R, Gong JZ, Guasparri I, Pesci A, Cai J, Liu J et al. (2003). NPM-ALK transgenic mice spontaneously develop T-cell lymphomas and plasma cell tumors. Blood 101: 1919–1927.

    CAS  PubMed  Google Scholar 

  • Chou CC, Yung BY, Hsu CY . (2007). Involvement of nPKC-MAPK pathway in the decrease of nucleophosmin/B23 during megakaryocytic differentiation of human myelogenous leukemia K562 cells. Life Sci 80: 2051–2059.

    CAS  PubMed  Google Scholar 

  • Cilloni D, Messa F, Rosso V, Arruga F, Defilippi I, Carturan S et al. (2008). Increase sensitivity to chemotherapeutical agents and cytoplasmatic interaction between NPM leukemic mutant and NF-kappaB in AML carrying NPM1 mutations. Leukemia 22: 1234–1240.

    CAS  PubMed  Google Scholar 

  • Colombo E, Bonetti P, Lazzerini Denchi E, Martinelli P, Zamponi R, Marine JC et al. (2005). Nucleophosmin is required for DNA integrity and p19Arf protein stability. Mol Cell Biol 25: 8874–8886.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Colombo E, Marine JC, Danovi D, Falini B, Pelicci PG . (2002). Nucleophosmin regulates the stability and transcriptional activity of p53. Nat Cell Biol 4: 529–533.

    CAS  PubMed  Google Scholar 

  • Colombo E, Martinelli P, Zamponi R, Shing DC, Bonetti P, Luzi L et al. (2006). Delocalization and destabilization of the Arf tumor suppressor by the leukemia-associated NPM mutant. Cancer Res 66: 3044–3050.

    CAS  PubMed  Google Scholar 

  • Dalenc F, Drouet J, Ader I, Delmas C, Rochaix P, Favre G et al. (2002). Increased expression of a COOH-truncated nucleophosmin resulting from alternative splicing is associated with cellular resistance to ionizing radiation in HeLa cells. Int J Cancer 100: 662–668.

    CAS  PubMed  Google Scholar 

  • Del Poeta G, Ammatuna E, Lavorgna S, Capelli G, Zaza S, Luciano F et al. (2010). The genotype nucleophosmin mutated and FLT3-ITD negative is characterized by high bax/bcl-2 ratio and favourable outcome in acute myeloid leukaemia. Br J Haematol 149: 383–387.

    CAS  PubMed  Google Scholar 

  • den Besten W, Kuo ML, Williams RT, Sherr CJ . (2005). Myeloid leukemia-associated nucleophosmin mutants perturb p53-dependent and independent activities of the Arf tumor suppressor protein. Cell Cycle 4: 1593–1598.

    CAS  PubMed  Google Scholar 

  • Dhar SK, Lynn BC, Daosukho C, St Clair DK . (2004). Identification of nucleophosmin as an NF-kappaB co-activator for the induction of the human SOD2 gene. J Biol Chem 279: 28209–28219.

    CAS  PubMed  Google Scholar 

  • Dhar SK, St Clair DK . (2009). Nucleophosmin blocks mitochondrial localization of p53 and apoptosis. J Biol Chem 284: 16409–16418.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P, Luise C et al. (2006). Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444: 638–642.

    CAS  PubMed  Google Scholar 

  • Dohner K, Schlenk RF, Habdank M, Scholl C, Rucker FG, Corbacioglu A et al. (2005). Mutant nucleophosmin (NPM1) predicts favorable prognosis in younger adults with acute myeloid leukemia and normal cytogenetics: interaction with other gene mutations. Blood 106: 3740–3746.

    Article  PubMed  Google Scholar 

  • Du W, Zhou Y, Pike S, Pang Q . (2009). NPM phosphorylation stimulates Cdk1, overrides G2/M checkpoint and increases leukemic blasts in mice. Carcinogenesis 31: 302–310.

    PubMed  PubMed Central  Google Scholar 

  • Eitoku M, Sato L, Senda T, Horikoshi M . (2008). Histone chaperones: 30 years from isolation to elucidation of the mechanisms of nucleosome assembly and disassembly. Cell Mol Life Sci 65: 414–444.

    CAS  PubMed  Google Scholar 

  • Endo A, Kitamura N, Komada M . (2009a). Nucleophosmin/B23 regulates ubiquitin dynamics in nucleoli by recruiting deubiquitylating enzyme USP36. J Biol Chem 284: 27918–27923.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Endo A, Matsumoto M, Inada T, Yamamoto A, Nakayama KI, Kitamura N et al. (2009b). Nucleolar structure and function are regulated by the deubiquitylating enzyme USP36. J Cell Sci 122: 678–686.

    CAS  PubMed  Google Scholar 

  • Falini B . (2008). Therapy-related acute myeloid leukaemia with mutated NPM1: treatment induced or de novo in origin? Leukemia 22: 891–892.

    CAS  PubMed  Google Scholar 

  • Falini B, Bolli N, Shan J, Martelli MP, Liso A, Pucciarini A et al. (2006a). Both carboxy-terminus NES motif and mutated tryptophan(s) are crucial for aberrant nuclear export of nucleophosmin leukemic mutants in NPMc+ AML. Blood 107: 4514–4523.

    CAS  PubMed  Google Scholar 

  • Falini B, Martelli MP, Bolli N, Bonasso R, Ghia E, Pallotta MT et al. (2006b). Immunohistochemistry predicts nucleophosmin (NPM) mutations in acute myeloid leukemia. Blood 108: 1999–2005.

    CAS  PubMed  Google Scholar 

  • Falini B, Mecucci C, Saglio G, Lo Coco F, Diverio D, Brown P et al. (2008). NPM1 mutations and cytoplasmic nucleophosmin are mutually exclusive of recurrent genetic abnormalities: a comparative analysis of 2562 patients with acute myeloid leukemia. Haematologica 93: 439–442.

    CAS  PubMed  Google Scholar 

  • Falini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, Pasqualucci L et al. (2005). Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med 352: 254–266.

    CAS  PubMed  Google Scholar 

  • Falini B, Nicoletti I, Bolli N, Martelli MP, Liso A, Gorello P et al. (2007). Translocations and mutations involving the nucleophosmin (NPM1) gene in lymphomas and leukemias. Haematologica 92: 519–532.

    CAS  PubMed  Google Scholar 

  • Foltz DR, Jansen LE, Bailey AO, Yates III JR, Bassett EA, Wood S et al. (2009). Centromere-specific assembly of CENP-a nucleosomes is mediated by HJURP. Cell 137: 472–484.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foltz DR, Jansen LE, Black BE, Bailey AO, Yates III JR, Cleveland DW . (2006). The human CENP-A centromeric nucleosome-associated complex. Nat Cell Biol 8: 458–469.

    CAS  PubMed  Google Scholar 

  • Frehlick LJ, Eirin-Lopez JM, Ausio J . (2007). New insights into the nucleophosmin/nucleoplasmin family of nuclear chaperones. Bioessays 29: 49–59.

    CAS  PubMed  Google Scholar 

  • Frelin C, Imbert V, Griessinger E, Peyron AC, Rochet N, Philip P et al. (2005). Targeting NF-kappaB activation via pharmacologic inhibition of IKK2-induced apoptosis of human acute myeloid leukemia cells. Blood 105: 804–811.

    CAS  PubMed  Google Scholar 

  • Fukuda M, Asano S, Nakamura T, Adachi M, Yoshida M, Yanagida M et al. (1997). CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature 390: 308–311.

    CAS  PubMed  Google Scholar 

  • Gao H, Jin S, Song Y, Fu M, Wang M, Liu Z et al. (2005). B23 regulates GADD45a nuclear translocation and contributes to GADD45a-induced cell cycle G2-M arrest. J Biol Chem 280: 10988–10996.

    CAS  PubMed  Google Scholar 

  • Garzon R, Garofalo M, Martelli MP, Briesewitz R, Wang L, Fernandez-Cymering C et al. (2008). Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin. Proc Natl Acad Sci USA 105: 3945–3950.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grisendi S, Bernardi R, Rossi M, Cheng K, Khandker L, Manova K et al. (2005). Role of nucleophosmin in embryonic development and tumorigenesis. Nature 437: 147–153.

    Article  CAS  PubMed  Google Scholar 

  • Grummitt CG, Townsley FM, Johnson CM, Warren AJ, Bycroft M . (2008). Structural consequences of nucleophosmin mutations in acute myeloid leukemia. J Biol Chem 283: 23326–23332.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gruszka AM, Lavorgna S, Consalvo MI, Ottone T, Martinelli C, Cinquanta M et al. (2010). A monoclonal antibody against mutated nucleophosmin 1 for the molecular diagnosis of acute myeloid leukemias. Blood 116: 2096–2102.

    CAS  PubMed  Google Scholar 

  • Gurumurthy M, Tan CH, Ng R, Zeiger L, Lau J, Lee J et al. (2008). Nucleophosmin interacts with HEXIM1 and regulates RNA polymerase II transcription. J Mol Biol 378: 302–317.

    CAS  PubMed  Google Scholar 

  • Guzman ML, Neering SJ, Upchurch D, Grimes B, Howard DS, Rizzieri DA et al. (2001). Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood 98: 2301–2307.

    CAS  PubMed  Google Scholar 

  • Haferlach C, Mecucci C, Schnittger S, Kohlmann A, Mancini M, Cuneo A et al. (2009). AML with mutated NPM1 carrying a normal or aberrant karyotype show overlapping biological, pathological, immunophenotypic, and prognostic features. Blood 114: 3024–3032.

    CAS  PubMed  Google Scholar 

  • Haindl M, Harasim T, Eick D, Muller S . (2008). The nucleolar SUMO-specific protease SENP3 reverses SUMO modification of nucleophosmin and is required for rRNA processing. EMBO Rep 9: 273–279.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herrera JE, Savkur R, Olson MO . (1995). The ribonuclease activity of nucleolar protein B23. Nucleic Acids Res 23: 3974–3979.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hingorani K, Szebeni A, Olson MO . (2000). Mapping the functional domains of nucleolar protein B23. J Biol Chem 275: 24451–24457.

    CAS  PubMed  Google Scholar 

  • Hsu CY, Yung BY . (2000). Over-expression of nucleophosmin/B23 decreases the susceptibility of human leukemia HL-60 cells to retinoic acid-induced differentiation and apoptosis. Int J Cancer 88: 392–400.

    CAS  PubMed  Google Scholar 

  • Itahana K, Bhat KP, Jin A, Itahana Y, Hawke D, Kobayashi R et al. (2003). Tumor suppressor ARF degrades B23, a nucleolar protein involved in ribosome biogenesis and cell proliferation. Mol Cell 12: 1151–1164.

    CAS  PubMed  Google Scholar 

  • Jian Y, Gao Z, Sun J, Shen Q, Feng F, Jing Y et al. (2009). RNA aptamers interfering with nucleophosmin oligomerization induce apoptosis of cancer cells. Oncogene 28: 4201–4211.

    CAS  PubMed  Google Scholar 

  • Jongen-Lavrencic M, Sun SM, Dijkstra MK, Valk PJ, Lowenberg B . (2008). MicroRNA expression profiling in relation to the genetic heterogeneity of acute myeloid leukemia. Blood 111: 5078–5085.

    CAS  PubMed  Google Scholar 

  • Joukov V, Groen AC, Prokhorova T, Gerson R, White E, Rodriguez A et al. (2006). The BRCA1/BARD1 heterodimer modulates ran-dependent mitotic spindle assembly. Cell 127: 539–552.

    CAS  PubMed  Google Scholar 

  • Kau TR, Schroeder F, Ramaswamy S, Wojciechowski CL, Zhao JJ, Roberts TM et al. (2003). A chemical genetic screen identifies inhibitors of regulated nuclear export of a Forkhead transcription factor in PTEN-deficient tumor cells. Cancer Cell 4: 463–476.

    CAS  PubMed  Google Scholar 

  • Kau TR, Silver PA . (2003). Nuclear transport as a target for cell growth. Drug Discov Today 8: 78–85.

    CAS  PubMed  Google Scholar 

  • Kerr LE, Birse-Archbold JL, Short DM, McGregor AL, Heron I, Macdonald DC et al. (2007). Nucleophosmin is a novel Bax chaperone that regulates apoptotic cell death. Oncogene 26: 2554–2562.

    CAS  PubMed  Google Scholar 

  • Koike A, Nishikawa H, Wu W, Okada Y, Venkitaraman AR, Ohta T . (2010). Recruitment of phosphorylated NPM1 to sites of DNA damage through RNF8-dependent ubiquitin conjugates. Cancer Res 70: 6746–6756.

    CAS  PubMed  Google Scholar 

  • Korgaonkar C, Hagen J, Tompkins V, Frazier AA, Allamargot C, Quelle FW et al. (2005). Nucleophosmin (B23) targets ARF to nucleoli and inhibits its function. Mol Cell Biol 25: 1258–1271.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Korgaonkar C, Zhao L, Modestou M, Quelle DE . (2002). ARF function does not require p53 stabilization or Mdm2 relocalization. Mol Cell Biol 22: 196–206.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kraus WL . (2008). Transcriptional control by PARP-1: chromatin modulation, enhancer-binding, coregulation, and insulation. Curr Opin Cell Biol 20: 294–302.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krause A, Hoffmann I . (2010). Polo-like kinase 2-dependent phosphorylation of NPM/B23 on serine 4 triggers centriole duplication. PLoS One 5: e9849.

    PubMed  PubMed Central  Google Scholar 

  • Kuo ML, den Besten W, Bertwistle D, Roussel MF, Sherr CJ . (2004). N-terminal polyubiquitination and degradation of the Arf tumor suppressor. Genes Dev 18: 1862–1874.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuo ML, den Besten W, Thomas MC, Sherr CJ . (2008). Arf-induced turnover of the nucleolar nucleophosmin-associated SUMO-2/3 protease Senp3. Cell Cycle 7: 3378–3387.

    CAS  PubMed  Google Scholar 

  • Kurki S, Peltonen K, Latonen L, Kiviharju TM, Ojala PM, Meek D et al. (2004). Nucleolar protein NPM interacts with HDM2 and protects tumor suppressor protein p53 from HDM2-mediated degradation. Cancer Cell 5: 465–475.

    CAS  PubMed  Google Scholar 

  • Lee SB, Xuan Nguyen TL, Choi JW, Lee KH, Cho SW, Liu Z et al. (2008). Nuclear Akt interacts with B23/NPM and protects it from proteolytic cleavage, enhancing cell survival. Proc Natl Acad Sci USA 105: 16584–16589.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leotoing L, Meunier L, Manin M, Mauduit C, Decaussin M, Verrijdt G et al. (2008). Influence of nucleophosmin/B23 on DNA binding and transcriptional activity of the androgen receptor in prostate cancer cell. Oncogene 27: 2858–2867.

    CAS  PubMed  Google Scholar 

  • Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE et al. (2010). DNMT3A mutations in acute myeloid leukemia. N Engl J Med 363: 2424–2433.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Sejas DP, Burma S, Chen DJ, Pang Q . (2007). Nucleophosmin suppresses oncogene-induced apoptosis and senescence and enhances oncogenic cooperation in cells with genomic instability. Carcinogenesis 28: 1163–1170.

    CAS  PubMed  Google Scholar 

  • Li J, Sejas DP, Rani R, Koretsky T, Bagby GC, Pang Q . (2006). Nucleophosmin regulates cell cycle progression and stress response in hematopoietic stem/progenitor cells. J Biol Chem 281: 16536–16545.

    CAS  PubMed  Google Scholar 

  • Li J, Zhang X, Sejas DP, Bagby GC, Pang Q . (2004). Hypoxia-induced nucleophosmin protects cell death through inhibition of p53. J Biol Chem 279: 41275–41279.

    CAS  PubMed  Google Scholar 

  • Li J, Zhang X, Sejas DP, Pang Q . (2005). Negative regulation of p53 by nucleophosmin antagonizes stress-induced apoptosis in human normal and malignant hematopoietic cells. Leuk Res 29: 1415–1423.

    CAS  PubMed  Google Scholar 

  • Li Z, Boone D, Hann SR . (2008). Nucleophosmin interacts directly with c-Myc and controls c-Myc-induced hyperproliferation and transformation. Proc Natl Acad Sci USA 105: 18794–18799.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Huang J, Wang J, Jiang S, Bailey AS, Goldman DC et al. (2008). Transvection mediated by the translocated cyclin D1 locus in mantle cell lymphoma. J Exp Med 205: 1843–1858.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Tan BC, Tseng KH, Chuang CP, Yeh CW, Chen KD et al. (2007a). Nucleophosmin acts as a novel AP2alpha-binding transcriptional corepressor during cell differentiation. EMBO Rep 8: 394–400.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Liu Z, Jang SW, Ma Z, Shinmura K, Kang S et al. (2007b). Sumoylation of nucleophosmin/B23 regulates its subcellular localization, mediating cell proliferation and survival. Proc Natl Acad Sci USA 104: 9679–9684.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Llanos S, Clark PA, Rowe J, Peters G . (2001). Stabilization of p53 by p14ARF without relocation of MDM2 to the nucleolus. Nat Cell Biol 3: 445–452.

    CAS  PubMed  Google Scholar 

  • Lowe SW, Sherr CJ . (2003). Tumor suppression by Ink4a-Arf: progress and puzzles. Curr Opin Genet Dev 13: 77–83.

    CAS  PubMed  Google Scholar 

  • Maggi Jr LB, Kuchenruether M, Dadey DY, Schwope RM, Grisendi S, Townsend RR et al. (2008). Nucleophosmin serves as a rate-limiting nuclear export chaperone for the mammalian ribosome. Mol Cell Biol 28: 7050–7065.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maiguel DA, Jones L, Chakravarty D, Yang C, Carrier F . (2004). Nucleophosmin sets a threshold for p53 response to UV radiation. Mol Cell Biol 24: 3703–3711.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mariano AR, Colombo E, Luzi L, Martinelli P, Volorio S, Bernard L et al. (2006). Cytoplasmic localization of NPM in myeloid leukemias is dictated by gain-of-function mutations that create a functional nuclear export signal. Oncogene 25: 4376–4380.

    CAS  PubMed  Google Scholar 

  • Martelli MP, Pettirossi V, Thiede C, Bonifacio E, Mezzasoma F, Cecchini D et al. (2010). CD34+ cells from AML with mutated NPM1 harbor cytoplasmic mutated nucleophosmin and generate leukemia in immunocompromised mice. Blood 116: 3907–3922.

    CAS  PubMed  Google Scholar 

  • Meder VS, Boeglin M, de Murcia G, Schreiber V . (2005). PARP-1 and PARP-2 interact with nucleophosmin/B23 and accumulate in transcriptionally active nucleoli. J Cell Sci 118: 211–222.

    CAS  PubMed  Google Scholar 

  • Meloni G, Mancini M, Gianfelici V, Martelli MP, Foa R, Falini B . (2008). Late relapse of acute myeloid leukemia with mutated NPM1 after eight years: evidence of NPM1 mutation stability. Haematologica 94: 298–300.

    Google Scholar 

  • Morris SW, Kirstein MN, Valentine MB, Dittmer KG, Shapiro DN, Saltman DL et al. (1994). Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science 263: 1281–1284.

    CAS  PubMed  Google Scholar 

  • Mrozek K, Dohner H, Bloomfield CD . (2007). Influence of new molecular prognostic markers in patients with karyotypically normal acute myeloid leukemia: recent advances. Curr Opin Hematol 14: 106–114.

    CAS  PubMed  Google Scholar 

  • Mukudai Y, Kubota S, Kawaki H, Kondo S, Eguchi T, Sumiyoshi K et al. (2008). Posttranscriptional regulation of chicken ccn2 gene expression by nucleophosmin/B23 during chondrocyte differentiation. Mol Cell Biol 28: 6134–6147.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murano K, Okuwaki M, Hisaoka M, Nagata K . (2008). Transcription regulation of the rRNA gene by a multifunctional nucleolar protein, B23/nucleophosmin, through its histone chaperone activity. Mol Cell Biol 28: 3114–3126.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mutka SC, Yang WQ, Dong SD, Ward SL, Craig DA, Timmermans PB et al. (2009). Identification of nuclear export inhibitors with potent anticancer activity in vivo. Cancer Res 69: 510–517.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Naoe T, Suzuki T, Kiyoi H, Urano T . (2006). Nucleophosmin: a versatile molecule associated with hematological malignancies. Cancer Sci 97: 963–969.

    CAS  PubMed  Google Scholar 

  • Negi SS, Olson MO . (2006). Effects of interphase and mitotic phosphorylation on the mobility and location of nucleolar protein B23. J Cell Sci 119: 3676–3685.

    CAS  PubMed  Google Scholar 

  • Nishida T, Yamada Y . (2008). SMT3IP1, a nucleolar SUMO-specific protease, deconjugates SUMO-2 from nucleolar and cytoplasmic nucleophosmin. Biochem Biophys Res Commun 374: 382–387.

    CAS  PubMed  Google Scholar 

  • Nousiainen M, Sillje HH, Sauer G, Nigg EA, Korner R . (2006). Phosphoproteome analysis of the human mitotic spindle. Proc Natl Acad Sci USA 103: 5391–5396.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Okada M, Jang SW, Ye K . (2007). Ebp1 association with nucleophosmin/B23 is essential for regulating cell proliferation and suppressing apoptosis. J Biol Chem 282: 36744–36754.

    CAS  PubMed  Google Scholar 

  • Okazuka K, Masuko M, Seki Y, Hama H, Honma N, Furukawa T et al. (2007). Successful all-trans retinoic acid treatment of acute promyelocytic leukemia in a patient with NPM/RAR fusion. Int J Hematol 86: 246–249.

    CAS  PubMed  Google Scholar 

  • Oki Y, Jelinek J, Beran M, Verstovsek S, Kantarjian HM, Issa JP . (2006). Mutations and promoter methylation status of NPM1 in myeloproliferative disorders. Haematologica 91: 1147–1148.

    CAS  PubMed  Google Scholar 

  • Okuda M, Horn HF, Tarapore P, Tokuyama Y, Smulian AG, Chan PK et al. (2000). Nucleophosmin/B23 is a target of CDK2/cyclin E in centrosome duplication. Cell 103: 127–140.

    CAS  PubMed  Google Scholar 

  • Okuwaki M, Iwamatsu A, Tsujimoto M, Nagata K . (2001a). Identification of nucleophosmin/B23, an acidic nucleolar protein, as a stimulatory factor for in vitro replication of adenovirus DNA complexed with viral basic core proteins. J Mol Biol 311: 41–55.

    CAS  PubMed  Google Scholar 

  • Okuwaki M, Matsumoto K, Tsujimoto M, Nagata K . (2001b). Function of nucleophosmin/B23, a nucleolar acidic protein, as a histone chaperone. FEBS Lett 506: 272–276.

    CAS  PubMed  Google Scholar 

  • Okuwaki M, Tsujimoto M, Nagata K . (2002). The RNA binding activity of a ribosome biogenesis factor, nucleophosmin/B23, is modulated by phosphorylation with a cell cycle-dependent kinase and by association with its subtype. Mol Biol Cell 13: 2016–2030.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Palaniswamy V, Moraes KC, Wilusz CJ, Wilusz J . (2006). Nucleophosmin is selectively deposited on mRNA during polyadenylation. Nat Struct Mol Biol 13: 429–435.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pang Q, Christianson TA, Koretsky T, Carlson H, David L, Keeble W et al. (2003). Nucleophosmin interacts with and inhibits the catalytic function of eukaryotic initiation factor 2 kinase PKR. J Biol Chem 278: 41709–41717.

    CAS  PubMed  Google Scholar 

  • Pasqualucci L, Liso A, Martelli MP, Bolli N, Pacini R, Tabarrini A et al. (2006). Mutated nucleophosmin detects clonal multilineage involvement in acute myeloid leukemia: impact on WHO classification. Blood 108: 4146–4155.

    CAS  PubMed  Google Scholar 

  • Peter M, Nakagawa J, Doree M, Labbe JC, Nigg EA . (1990). Identification of major nucleolar proteins as candidate mitotic substrates of cdc2 kinase. Cell 60: 791–801.

    CAS  PubMed  Google Scholar 

  • Ramsamooj P, Notario V, Dritschilo A . (1995). Modification of nucleolar protein B23 after exposure to ionizing radiation. Radiat Res 143: 158–164.

    CAS  PubMed  Google Scholar 

  • Redner RL, Chen JD, Rush EA, Li H, Pollock SL . (2000). The t(5;17) acute promyelocytic leukemia fusion protein NPM-RAR interacts with co-repressor and co-activator proteins and exhibits both positive and negative transcriptional properties. Blood 95: 2683–2690.

    CAS  PubMed  Google Scholar 

  • Redner RL, Rush EA, Faas S, Rudert WA, Corey SJ . (1996). The t(5;17) variant of acute promyelocytic leukemia expresses a nucleophosmin-retinoic acid receptor fusion. Blood 87: 882–886.

    CAS  PubMed  Google Scholar 

  • Rodway H, Llanos S, Rowe J, Peters G . (2004). Stability of nucleolar versus non-nucleolar forms of human p14(ARF). Oncogene 23: 6186–6192.

    CAS  PubMed  Google Scholar 

  • Roussel P, Hernandez-Verdun D . (1994). Identification of Ag-NOR proteins, markers of proliferation related to ribosomal gene activity. Exp Cell Res 214: 465–472.

    CAS  PubMed  Google Scholar 

  • Ruddon RW, Bedows E . (1997). Assisted protein folding. J Biol Chem 272: 3125–3128.

    CAS  PubMed  Google Scholar 

  • Sato K, Hayami R, Wu W, Nishikawa T, Nishikawa H, Okuda Y et al. (2004). Nucleophosmin/B23 is a candidate substrate for the BRCA1-BARD1 ubiquitin ligase. J Biol Chem 279: 30919–30922.

    CAS  PubMed  Google Scholar 

  • Savkur RS, Olson MO . (1998). Preferential cleavage in pre-ribosomal RNA byprotein B23 endoribonuclease. Nucleic Acids Res 26: 4508–4515.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schlenk RF, Dohner K, Kneba M, Gotze K, Hartmann F, Del Valle F et al (2009). Gene mutations and response to treatment with all-trans retinoic acid in elderly patients with acute myeloid leukemia. Results from the AMLSG Trial AML HD98B. Haematologica 94: 54–60.

    CAS  PubMed  Google Scholar 

  • Schlenk RF, Dohner K, Krauter J, Frohling S, Corbacioglu A, Bullinger L et al. (2008). Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N Engl J Med 358: 1909–1918.

    CAS  PubMed  Google Scholar 

  • Schmitt CA, McCurrach ME, de Stanchina E, Wallace-Brodeur RR, Lowe SW . (1999). INK4a/ARF mutations accelerate lymphomagenesis and promote chemoresistance by disabling p53. Genes Dev 13: 2670–2677.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schnittger S, Kern W, Tschulik C, Weiss T, Dicker F, Falini B et al. (2009). Minimal residual disease levels assessed by NPM1 mutation specific RQ-PCR provide important prognostic information in AML. Blood 114: 2220–2231.

    CAS  PubMed  Google Scholar 

  • Schnittger S, Schoch C, Kern W, Mecucci C, Tschulik C, Martelli MF et al. (2005). Nucleophosmin gene mutations are predictors of favorable prognosis in acute myelogenous leukemia with a normal karyotype. Blood 106: 3733–3739.

    CAS  PubMed  Google Scholar 

  • Shandilya J, Swaminathan V, Gadad SS, Choudhari R, Kodaganur GS, Kundu TK . (2009). Acetylated NPM1 localizes in the nucleoplasm and regulates transcriptional activation of genes implicated in oral cancer manifestation. Mol Cell Biol 29: 5115–5127.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sportoletti P, Grisendi S, Majid SM, Cheng K, Clohessy JG, Viale A et al. (2008). Npm1 is a haploinsufficient suppressor of myeloid and lymphoid malignancies in the mouse. Blood 111: 3859–3862.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sugimoto M, Kuo ML, Roussel MF, Sherr CJ . (2003). Nucleolar Arf tumor suppressor inhibits ribosomal RNA processing. Mol Cell 11: 415–424.

    CAS  PubMed  Google Scholar 

  • Suzuki T, Kiyoi H, Ozeki K, Tomita A, Yamaji S, Suzuki R et al. (2005). Clinical characteristics and prognostic implications of NPM1 mutations in acute myeloid leukemia. Blood 106: 2854–2861.

    CAS  PubMed  Google Scholar 

  • Swaminathan V, Kishore AH, Febitha KK, Kundu TK . (2005). Human histone chaperone nucleophosmin enhances acetylation-dependent chromatin transcription. Mol Cell Biol 25: 7534–7545.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Szebeni A, Hingorani K, Negi S, Olson MO . (2003). Role of protein kinase CK2 phosphorylation in the molecular chaperone activity of nucleolar protein b23. J Biol Chem 278: 9107–9115.

    CAS  PubMed  Google Scholar 

  • Szebeni A, Mehrotra B, Baumann A, Adam SA, Wingfield PT, Olson MO . (1997). Nucleolar protein B23 stimulates nuclear import of the HIV-1 rev protein and NLS-conjugated albumin. Biochemistry 36: 3941–3949.

    CAS  PubMed  Google Scholar 

  • Szebeni A, Olson MO . (1999). Nucleolar protein B23 has molecular chaperone activities. Protein Sci 8: 905–912.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tago K, Chiocca S, Sherr CJ . (2005). Sumoylation induced by the Arf tumor suppressor: a p53-independent function. Proc Natl Acad Sci USA 102: 7689–7694.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takemura M, Sato K, Nishio M, Akiyama T, Umekawa H, Yoshida S . (1999). Nucleolar protein B23.1 binds to retinoblastoma protein and synergistically stimulates DNA polymerase alpha activity. J Biochem 125: 904–909.

    CAS  PubMed  Google Scholar 

  • Tarapore P, Shinmura K, Suzuki H, Tokuyama Y, Kim SH, Mayeda A et al. (2006). Thr199 phosphorylation targets nucleophosmin to nuclear speckles and represses pre-mRNA processing. FEBS Lett 580: 399–409.

    CAS  PubMed  Google Scholar 

  • Taussig DC, Vargaftig J, Miraki-Moud F, Griessinger E, Sharrock K, Luke T et al. (2010). Leukemia-initiating cells from some acute myeloid leukemia patients with mutated nucleophosmin reside in the CD34(-) fraction. Blood 115: 1976–1984.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thiede C, Koch S, Creutzig E, Steudel C, Illmer T, Schaich M et al. (2006). Prevalence and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid leukemia (AML). Blood 107: 4011–4020.

    CAS  PubMed  Google Scholar 

  • Tokuyama Y, Horn HF, Kawamura K, Tarapore P, Fukasawa K . (2001). Specific phosphorylation of nucleophosmin on Thr(199) by cyclin-dependent kinase 2-cyclin E and its role in centrosome duplication. J Biol Chem 276: 21529–21537.

    CAS  PubMed  Google Scholar 

  • Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z et al. (2004). in vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303: 844–848.

    CAS  PubMed  Google Scholar 

  • Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grimm J, Lintault L et al. (2007). Restoration of p53 function leads to tumour regression in vivo. Nature 445: 661–665.

    CAS  PubMed  Google Scholar 

  • Verhaak RG, Goudswaard CS, van Putten W, Bijl MA, Sanders MA, Hugens W et al. (2005). Mutations in nucleophosmin (NPM1) in acute myeloid leukemia (AML): association with other gene abnormalities and previously established gene expression signatures and their favorable prognostic significance. Blood 106: 3747–3754.

    CAS  PubMed  Google Scholar 

  • Wang D, Umekawa H, Olson MO . (1993). Expression and subcellular locations of two forms of nucleolar protein B23 in rat tissues and cells. Cell Mol Biol Res 39: 33–42.

    CAS  PubMed  Google Scholar 

  • Wang G, Pan Y, Ahmad KA, Ahmed K . (2010). Protein B23/nucleophosmin/numatrin nuclear dynamics in relation to protein kinase CK2 and apoptotic activity in prostate cells. Biochemistry 49: 3842–3852.

    CAS  PubMed  Google Scholar 

  • Wang W, Budhu A, Forgues M, Wang XW . (2005). Temporal and spatial control of nucleophosmin by the Ran-Crm1 complex in centrosome duplication. Nat Cell Biol 7: 823–830.

    CAS  PubMed  Google Scholar 

  • Wanzel M, Russ AC, Kleine-Kohlbrecher D, Colombo E, Pelicci PG, Eilers M . (2008). A ribosomal protein L23-nucleophosmin circuit coordinates Mizl function with cell growth. Nat Cell Biol 10: 1051–1061.

    CAS  PubMed  Google Scholar 

  • Weber JD, Jeffers JR, Rehg JE, Randle DH, Lozano G, Roussel MF et al. (2000). p53-independent functions of the p19(ARF) tumor suppressor. Genes Dev 14: 2358–2365.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weber JD, Taylor LJ, Roussel MF, Sherr CJ, Bar-Sagi D . (1999). Nucleolar Arf sequesters Mdm2 and activates p53. Nat Cell Biol 1: 20–26.

    CAS  PubMed  Google Scholar 

  • Wilson CS, Davidson GS, Martin SB, Andries E, Potter J, Harvey R et al. (2006). Gene expression profiling of adult acute myeloid leukemia identifies novel biologic clusters for risk classification and outcome prediction. Blood 108: 685–696.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu MH, Chang JH, Chou CC, Yung BY . (2002a). Involvement of nucleophosmin/B23 in the response of HeLa cells to UV irradiation. Int J Cancer 97: 297–305.

    CAS  PubMed  Google Scholar 

  • Wu MH, Chang JH, Yung BY . (2002b). Resistance to UV-induced cell-killing in nucleophosmin/B23 over-expressed NIH 3T3 fibroblasts: enhancement of DNA repair and up-regulation of PCNA in association with nucleophosmin/B23 over-expression. Carcinogenesis 23: 93–100.

    PubMed  Google Scholar 

  • Xiao J, Zhang Z, Chen GG, Zhang M, Ding Y, Fu J et al. (2009). Nucleophosmin/B23 interacts with p21WAF1/CIP1 and contributes to its stability. Cell Cycle 8: 889–895.

    CAS  PubMed  Google Scholar 

  • Yao J, Fu C, Ding X, Guo Z, Zenreski A, Chen Y et al. (2004). Nek2A kinase regulates the localization of numatrin to centrosome in mitosis. FEBS Lett 575: 112–118.

    CAS  PubMed  Google Scholar 

  • Yao Z, Duan S, Hou D, Wang W, Wang G, Liu Y et al. (2010). B23 acts as a nucleolar stress sensor and promotes cell survival through its dynamic interaction with hnRNPU and hnRNPA1. Oncogene 29: 1821–1834.

    CAS  PubMed  Google Scholar 

  • Yoneda-Kato N, Kato JY . (2008). Shuttling imbalance of MLF1 results in p53 instability and increases susceptibility to oncogenic transformation. Mol Cell Biol 28: 422–434.

    CAS  PubMed  Google Scholar 

  • Yoneda-Kato N, Look AT, Kirstein MN, Valentine MB, Raimondi SC, Cohen KJ et al. (1996). The t(3;5)(q25.1;q34) of myelodysplastic syndrome and acute myeloid leukemia produces a novel fusion gene, NPM-MLF1. Oncogene 12: 265–275.

    CAS  PubMed  Google Scholar 

  • Yoneda-Kato N, Tomoda K, Umehara M, Arata Y, Kato JY . (2005). Myeloid leukemia factor 1 regulates p53 by suppressing COP1 via COP9 signalosome subunit 3. EMBO J 24: 1739–1749.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Y, Maggi Jr LB, Brady SN, Apicelli AJ, Dai MS, Lu H et al. (2006). Nucleophosmin is essential for ribosomal protein L5 nuclear export. Mol Cell Biol 26: 3798–3809.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yun C, Wang Y, Mukhopadhyay D, Backlund P, Kolli N, Yergey A et al. (2008). Nucleolar protein B23/nucleophosmin regulates the vertebrate SUMO pathway through SENP3 and SENP5 proteases. J Cell Biol 183: 589–595.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yung BY . (2007). Oncogenic role of nucleophosmin/B23. Chang Gung Med J 30: 285–293.

    PubMed  Google Scholar 

  • Yusufzai TM, Tagami H, Nakatani Y, Felsenfeld G . (2004). CTCF tethers an insulator to subnuclear sites, suggesting shared insulator mechanisms across species. Mol Cell 13: 291–298.

    CAS  PubMed  Google Scholar 

  • Zhang H, Shi X, Paddon H, Hampong M, Dai W, Pelech S . (2004). B23/nucleophosmin serine 4 phosphorylation mediates mitotic functions of polo-like kinase 1. J Biol Chem 279: 35726–35734.

    CAS  PubMed  Google Scholar 

  • Zhang Y, Zhang M, Yang L, Xiao Z . (2007). NPM1 mutations in myelodysplastic syndromes and acute myeloid leukemia with normal karyotype. Leuk Res 31: 109–111.

    CAS  PubMed  Google Scholar 

  • Zhou Y, Du W, Koretsky T, Bagby GC, Pang Q . (2008). TAT-mediated intracellular delivery of NPM-derived peptide induces apoptosis in leukemic cells and suppresses leukemogenesis in mice. Blood 112: 2474–2483.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zindy F, Eischen CM, Randle DH, Kamijo T, Cleveland JL, Sherr CJ et al. (1998). Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev 12: 2424–2433.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from AIRC, EC and Ministero della Salute to PGP, EC and MA.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E Colombo or P G Pelicci.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colombo, E., Alcalay, M. & Pelicci, P. Nucleophosmin and its complex network: a possible therapeutic target in hematological diseases. Oncogene 30, 2595–2609 (2011). https://doi.org/10.1038/onc.2010.646

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.646

Keywords

This article is cited by

Search

Quick links