Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

c-Cbl inhibits angiogenesis and tumor growth by suppressing activation of PLCγ1

Abstract

Angiogenesis is regulated by highly coordinated function of various proteins with pro- and anti-angiogenic functions. Among the many cytoplasmic signaling proteins that are activated by VEGFR-2, activation of PLCγ1 is considered to have a pivotal role in angiogenic signaling. In previous study we have identified c-Cbl as a negative regulator of PLCγ1 in endothelial cells, the biochemical and biological significance of c-Cbl, however, in angiogenesis in vivo and molecular mechanisms involved were remained elusive. In this study, we report that genetic inactivation of c-Cbl in mice results in enhanced tumor angiogenesis and retinal neovascularization. Endothelial cells derived from c-Cbl null mice displayed elevated cell proliferation and tube formation in response to VEGF stimulation. Loss of c-Cbl also resulted in robust activation of PLCγ1 and increased intracellular calcium release. c-Cbl-dependent ubiquitination selectively inhibited tyrosine phosphorylation of PLCγ1 and mostly refrained from ubiquitin-mediated degradation. Hence, we propose c-Cbl as an angiogenic suppressor protein where upon activation it uniquely modulates PLCγ1 activation by ubiquitination and subsequently inhibits VEGF-driven angiogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Adams RH, Alitalo K . (2007). Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 8: 464–478.

    Article  CAS  Google Scholar 

  • Fukumura D, Jain RK . (2007). Tumor microvasculature and microenvironment: Targets for anti-angiogenesis and normalization. Microvasc Res 74: 72–84.

    Article  CAS  Google Scholar 

  • Fang D, Liu Y-C . (2001). Proteolysis-independent regulation of PI3K by Cbl-b-mediated ubiquitination in T cells. Nat Immunol 2: 870–875.

    Article  CAS  Google Scholar 

  • Feshchenko EA, Langdon WY, Tsygankov AY . (1998). Fyn, Yes, and Syk phosphorylation sites in c-Cbl map to the same tyrosine residues that become phosphorylated in activated T cells. J Biol Chem 273: 8323–8331.

    Article  CAS  Google Scholar 

  • Folkman J . (1990). What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 82: 4–6.

    Article  CAS  Google Scholar 

  • Funakoshi T, Birsner AE, D'Amato RJ . (2006). Antiangiogenic effect of oral 2-methoxyestradiol on choroidal neovascularization in mice. Exp Eye Res 83: 1102–1107.

    Article  CAS  Google Scholar 

  • Graham LJ, Stoica BA, Shapiro M, DeBell KE, Rellahan B, Laborda J et al. (1998). Sequences surrounding the Src-homology 3 domain of phospholipase C gamma-1 increase the domain's association with Cbl. Biochem Biophys Res Commun 249: 537–541.

    Article  CAS  Google Scholar 

  • Graham LJ, Veri M-C, DeBell KE, Noviello C, Rawat R, Jen S et al. (2003). 70Z/3 Cbl induces PLC gamma1 activation in T lymphocytes via an alternate Lat- and Slp-76-independent signaling mechanism. Oncogene 22: 2493–2503.

    Article  CAS  Google Scholar 

  • Hochstrasser M . (2009). Origin and function of ubiquitin-like proteins. Nature 458: 422–429.

    Article  CAS  Google Scholar 

  • Husain D, Meyer R, Mehta M, Pfeifer WM, Chou E, Navruzbekov G et al. (2010). Role of c-Cbl Dependent Regulation of Phospholipase C gamma 1 Activation in Experimental Choroidal Neovascularization. Invest Ophthalmol Vis Sci 51: 6803–6809.

    Article  Google Scholar 

  • Ji Q-S, Winnier GE, Niswender KD, Horstman D, Wisdom R, Magnusen MA et al. (1997). Essential role of the tyrosine kinase substrate phospholipase C-gamma1 inmammalian growth and development. Proc Natl Acad Sci USA 94: 2999–3003.

    Article  CAS  Google Scholar 

  • Lawson ND, Mugford JW, Diamond BA, Weinstein BM . (2003). phospholipase C gamma-1 is required downstream of vascular endothelial growth factor during arterial development. Genes Dev 17: 1346–1351.

    Article  CAS  Google Scholar 

  • Liao H-J, Kume T, McKay C, Xu M-J, Ihle JN, Carpenter G . (2002). Absence of erythrogenesis and vasculogenesis in Plc gamma-deficient mice. J Biol Chem 277: 9335–9341.

    Article  CAS  Google Scholar 

  • Meyer RD, Latz C, Rahimi N . (2003). Recruitment and activation of PLCγ1 by vascular endothelial growth factor receptor-2 are required for tubulogenesis and differentiation of endothelial cells. J Biol Chem 278: 16347–16355.

    Article  CAS  Google Scholar 

  • Meyer RD, Sacks DB, Rahimi N . (2008). IQGAP1-dependent signaling pathway regulates endothelial cell proliferation and angiogenesis. PLoS One 3: e3848.

    Article  Google Scholar 

  • Meyer RD, Singh A, Majnoun F, Latz C, Lashkari K, Rahimi N . (2004). Substitution of C-terminus of VEGFR-2 with VEGFR-1 promotes VEGFR-1 activation and endothelial cell proliferation. Oncogene 23: 5523–5531.

    Article  CAS  Google Scholar 

  • Miura-Shimura Y, Duan L, Rao NL, Reddi AL, Shimura H, Rottapel R et al. (2003). Cbl-mediated ubiquitinylation and negative regulation of Vav. J Biol Chem 278: 38495–38504.

    Article  CAS  Google Scholar 

  • Miyazaki T, Sanjay A, Neff L, Tanaka S, Horne WC, Baron R . (2004). Src kinase activity is essential for osteoclast function. J Biol Chem 279: 17660–17666.

    Article  CAS  Google Scholar 

  • Murphy MA, Schnall RG, Venter DJ, Barnett L, Bertoncello I, Thien CB et al. (1998). Tissue hyperplasia and enhanced T-cell signalling via ZAP-70 in c-Cbl-deficient mice. Mol Cell Biol 18: 4872–4882.

    Article  CAS  Google Scholar 

  • Naramura M, Jang IK, Kole H, Huang F, Haines D, Gu H . (2002). c-Cbl and Cbl-b regulate T cell responsiveness by promoting ligand-induced TCR down-modulation. Nat Immunol 3: 1192–1199.

    Article  CAS  Google Scholar 

  • Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L . (2006). VEGF receptor signalling - in control of vascular function. Nat Rev Mol Cell Biol 7: 359–371.

    Article  CAS  Google Scholar 

  • Rahimi N . (2006). VEGFR-1 and VEGFR-2: two non-identical twins with a unique physiognomy. Front Biosci 11: 818–829.

    Article  CAS  Google Scholar 

  • Rahimi N, Dayanir V, Lashkari K . (2000). Receptor chimeras indicate that the vascular endothelial growth factor receptor-1 (VEGFR-1) modulates mitogenic activity of VEGFR-2 in endothelial cells. J Biol Chem 275: 16986–16992.

    Article  CAS  Google Scholar 

  • Rahimi N, Golde TE, Meyer RD . (2009). Identification of ligand-induced proteolytic cleavage and ectodomain shedding of VEGFR-1/FLT1 in leukemic cancer cells. Cancer Res 69: 2607–2614.

    Article  CAS  Google Scholar 

  • Ravid T, Hochstrasser M . (2008). Diversity of degradation signals in the ubiquitin–proteasome system. Nat Rev Mol Cell Biol 9: 679–690.

    Article  CAS  Google Scholar 

  • Rebecchi MJ, Pentyala SN . (2000). Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol Rev 80: 1291–1335.

    Article  CAS  Google Scholar 

  • Sakurai Y, Ohgimoto K, Kataoka Y, Yoshida N, Shibuya M . (2005). Essential role of Flk-1 (VEGF receptor 2) tyrosine residue 1173 in vasculogenesis in mice. Proc Natl Acad Sci USA 102: 1076–1081.

    Article  CAS  Google Scholar 

  • Schwartz AL, Ciechanover A . (2009). Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology. Annu Rev Pharmacol Toxicol 49: 73–79.

    Article  CAS  Google Scholar 

  • Singh AJ, Meyer RD, Band H, Rahimi N . (2005). The carboxyl terminus of VEGFR-2 is required for PKC-mediated downregulation. Mol Biol Cell 16: 2106–2118.

    Article  CAS  Google Scholar 

  • Singh AJ, Meyer RD, Navruzbekov G, Shelke R, Duan L, Band H et al. (2007). A critical role for the E3-ligase activity of c-Cbl in VEGFR-2-mediated PLCgamma1 activation and angiogenesis. Proc Natl Acad Sci USA 104: 5413–5418.

    Article  CAS  Google Scholar 

  • Swaminathan G, Tsygankov AY . (2006). The Cbl family proteins: ring leaders in regulation of cell signaling. J Cell Physiol 209: 21–43.

    Article  CAS  Google Scholar 

  • Takahashi T, Yamaguchi S, Chida K, Shibuya M . (2001). A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLCγ1 and DNA synthesis in vascular endothelial cells. EMBO J 20: 2768–2778.

    Article  CAS  Google Scholar 

  • Teckchandani AM, Panetti TS, Tsygankov AY . (2005). c-Cbl regulates migration of v-Abl-transformed NIH 3T3 fibroblasts via Rac1. Exp Cell Res 307: 247–258.

    Article  CAS  Google Scholar 

  • Thien CBF, Langdon WY . (2005). c-Cbl and Cbl-b ubiquitin ligases: substrate diversity and negative regulation of signaling responses. Biochem J 391: 153–165.

    Article  CAS  Google Scholar 

  • Woodman SE, Ashton AW, Schubert W, Lee H, Williams TM, Medina FA et al. (2003). Caveolin-1 knockout mice show an impaired angiogenic response to exogenous stimuli. Am J Pathol 162: 2059–2068.

    Article  CAS  Google Scholar 

  • Zeng H, Qin L, Zhao D, Tan X, Manseau EJ, Van Hoang M et al. (2006). Orphan nuclear receptor TR3/Nur77 regulates VEGF-A-induced angiogenesis through its transcriptional activity. J Exp Med 203: 719–729.

    Article  CAS  Google Scholar 

  • Zhang H, He Y, Dai S, Xu Z, Luo Y, Wan T et al. (2008). AIP1 functions as an endogenous inhibitor of VEGFR2-mediated signaling and inflammatory angiogenesis in mice. J Clin Invest 118: 3904–3916.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Institutes of Health (NIH/NEI) to NR and Massachusetts Lions Foundation grant to Department of Ophthalmology, and also by BU CTSI grant (NR). The c-Cbl knockout mice were generously provided by Jeffrey Chiang (National Cancer Institute, Frederick, MD).Author contribution: Rosana D Meyer, Deeba Husain and Nader Rahimi all performed experiments. Nader Rahimi wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Rahimi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, R., Husain, D. & Rahimi, N. c-Cbl inhibits angiogenesis and tumor growth by suppressing activation of PLCγ1. Oncogene 30, 2198–2206 (2011). https://doi.org/10.1038/onc.2010.597

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.597

Keywords

This article is cited by

Search

Quick links