Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

CdGAP is required for transforming growth factor β- and Neu/ErbB-2-induced breast cancer cell motility and invasion

Abstract

RhoA, Rac1 and Cdc42, the best-characterized members of the Rho family of small GTPases, are critical regulators of many cellular activities. Cdc42 GTPase-activating protein (CdGAP) is a serine- and proline-rich RhoGAP protein showing GAP activity against both Cdc42 and Rac1 but not RhoA. CdGAP is phosphorylated downstream of the MEK–ERK (extracellular signal-regulated kinase) pathway in response to serum and is required for normal cell spreading and polarized lamellipodia formation. In this study, we found that CdGAP protein and mRNA levels are highly increased in mammary tumor explants expressing an activated Neu/ErbB-2 (Neu-NT) receptor. In response to transforming growth factor-β (TGFβ) stimulation, Neu-NT-expressing mammary tumor explants demonstrate a clear induction in cell motility and invasion. We show that downregulation of CdGAP expression by small interfering RNA abrogates the ability of TGFβ to induce cell motility and invasion of Neu-NT-expressing mammary tumor explants. However, it has no effect on TGFβ-mediated cell adhesion on type 1 collagen and fibronectin. Interestingly, protein expression of E-Cadherin is highly increased in Neu-NT-expressing mammary tumor explants depleted of CdGAP. In addition, complete loss of E-Cadherin expression is not observed in CdGAP-depleted cells during TGFβ-mediated epithelial to mesenchymal transition. Downregulation of the CdGAP expression also decreases cell proliferation of Neu-NT-expressing mammary tumor explants independently of TGFβ. Rescue analysis using re-expression of various CdGAP deletion-mutant proteins revealed that the proline-rich domain (PRD) but not the GAP domain of CdGAP is essential to mediate TGFβ-induced cell motility and invasion. Finally, we found that TGFβ induces the expression and phosphorylation of CdGAP in mammary epithelial NMuMG cells. Taken together, these studies identify CdGAP as a novel molecular target in TGFβ signaling and implicate CdGAP as an essential component in the synergistic interaction between TGFβ and Neu/ErbB-2 signaling pathways in breast cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Bakin AV, Tomlinson AK, Bhowmick NA, Moses HL, Arteaga CL . (2000). Phosphatidylinositol 3-kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition and cell migration. J Biol Chem 275: 36803–36810.

    Article  CAS  Google Scholar 

  • Barrios-Rodiles M, Brown KR, Ozdamar B, Bose R, Liu Z, Donovan RS et al. (2005). High-throughput mapping of a dynamic signaling network in mammalian cells. Science 307: 1621–1625.

    Article  CAS  Google Scholar 

  • Broussard JA, Webb DJ, Kaverina I . (2008). Asymmetric focal adhesion disassembly in motile cells. Curr Opin Cell Biol 20: 85–90.

    Article  CAS  Google Scholar 

  • Bustelo XR, Sauzeau V, Berenjeno IM . (2007). GTP-binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo. Bioessay 29: 356–370.

    Article  CAS  Google Scholar 

  • Carragher NO, Frame MC . (2004). Focal adhesion and actin dynamics: a place where kinases and proteases meet to promote invasion. Trends Cell Biol 14: 241–249.

    Article  CAS  Google Scholar 

  • Cerione RA, Zheng Y . (1996). The Dbl family of oncogenes. Curr Opin Cell Biol 8: 216–222.

    Article  CAS  Google Scholar 

  • Danek EI, Tcherkezian J, Meriane M, Triki I, Lamarche-Vane N . (2007). Glycogen synthase kinase-3 phosphorylates CdGAP at a consensus ERK1 regulatory site. J Biol Chem 282: 3624–3631.

    Article  CAS  Google Scholar 

  • Derynck R, Zhang YE . (2003). Smad-dependent and Smad-independent pathways in TGF-beta family signaling. Nature 425: 577–584.

    Article  CAS  Google Scholar 

  • Gómez del Pulgar T, Benitah SA, Valerón PF, Espina C, Lacal JC . (2005). Rho GTPase expression in tumorigenesis: evidence for a significant link. Bioessays 27: 602–613.

    Article  Google Scholar 

  • Gupta SK, Gallego C, Johnson GL . (1992). Mitogenic pathways regulated by G protein oncogenes. Mol Biol Cell 3: 123–128.

    Article  CAS  Google Scholar 

  • Huber MA, Kraut N, Beug H . (2005). Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol 17: 548–558.

    Article  CAS  Google Scholar 

  • Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T et al. (2008). Cancer statistics, 2008. CA Cancer J Clin 58: 71–96.

    Article  Google Scholar 

  • Jenna S, Hussain NK, Danek EI, Triki I, Wasiak S, McPherson PS et al. (2002). The activity of the GTPase-activating protein CdGAP is regulated by the endocytic protein intersectin. J Biol Chem 277: 6366–6373.

    Article  CAS  Google Scholar 

  • Jiang W, Betson M, Mulloy R, Foster R, Lévay M, Ligeti E et al. (2008). p190A RhoGAP is a glycogen synthase kinase-3-β substrate required for polarized cell migration. J Biol Chem 283: 20978–20988.

    Article  CAS  Google Scholar 

  • Karlsson R, Pedersen ED, Wang Z, Brakebusch C . (2009). Rho GTPase function in tumorigenesis. Biochim Biophys Acta 1796: 91–98.

    CAS  Google Scholar 

  • Kim TY, Vigil D, Der CJ, Juliano RL . (2009). Role of DLC-1, a tumor suppressor protein with RhoGAP activity, in regulation of the cytoskeleton and cell motility. Cancer Metastasis Rev 28: 77–83.

    Article  CAS  Google Scholar 

  • Lalonde D, Grubinger M, Lamarche-Vane N, Turner CE . (2006). CdGAP associates with actopaxin to regulate integrin-dependent changes in cell morphology and motility. Curr Biol 16: 1–11.

    Article  Google Scholar 

  • Lamarche-Vane N, Hall A . (1998). CdGAP, a novel proline-rich GTPase-activating protein for Cdc42 and Rac. J Biol Chem 273: 29172–29177.

    Article  CAS  Google Scholar 

  • Miettinen PJ, Ebner R, Lopez AR, Derynck R . (1994). TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J Cell Biol 127: 2021–2036.

    Article  CAS  Google Scholar 

  • Muller WJ, Sinn E, Pattengale PK, Wallace R, Leder P . (1988). Single-step inductionof mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell 54: 105–115.

    Article  CAS  Google Scholar 

  • Muraoka RS, Koh Y, Roebuck LR, Sanders ME, Brantley-Sieders D, Gorska AE et al. (2003). Increased malignancy of Neu-induced mammary tumors overexpressing active transforming growth factor beta1. Mol Cell Biol 23: 8691–8703.

    Article  CAS  Google Scholar 

  • Muraoka-Cook RS, Dumont N, Arteaga CL . (2005). Dual role of transforming growth factor beta in mammary tumorigenesis and metastatic progression. Clin Cancer Res 11: 937S–943S.

    CAS  PubMed  Google Scholar 

  • Muraoka-Cook RS, Shin I, Yi JY, Easterly E, Barcellos-Hoff MH, Yingling JM et al. (2006). Activated type I TGFbeta receptor kinase enhances the survival of mammary epithelial cells and accelerates tumor progression. Oncogene 25: 3408–3423.

    Article  CAS  Google Scholar 

  • Nagaraj NS, Datta PK . (2010). Targeting the transforming growth factor-beta signaling pathway in human cancer. Expert Opin Investig Drugs 19: 77–91.

    Article  CAS  Google Scholar 

  • Northey JJ, Chmielecki J, Ngan E, Russo C, Annis MG, Muller WJ et al. (2008). Signaling through ShcA is required for transforming growth factor B and Neu/Erb2-induced breast cancer cell motility and invasion. Mol Cell Biol 28: 3162–3176.

    Article  CAS  Google Scholar 

  • Ozdamar B, Bose R, Barrios-Rodiles M, Wang HR, Zhang Y, Wrana JL . (2005). Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science 307: 1603–1609.

    Article  CAS  Google Scholar 

  • Pardali E, ten Dijke P . (2009). Transforming growth factor-beta signaling and tumor angiogenesis. Front Biosci 14: 4848–4861.

    Article  CAS  Google Scholar 

  • Raftopoulou M, Hall A . (2004). Cell migration: Rho GTPases lead the way. Dev Biol 265: 23–32.

    Article  CAS  Google Scholar 

  • Siegel PM, Dankort DL, Hardy WR, Muller WJ . (1994). Novel activating mutations in the neu proto-oncogene involved in induction of mammary tumors. Mol Cell Biol 14: 7068–7077.

    Article  CAS  Google Scholar 

  • Siegel PM, Shu W, Cardiff RD, Muller WJ, Massagué J . (2003). Transforming growth factor beta signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis. Natl Acad Sci USA 100: 8430–8435.

    Article  CAS  Google Scholar 

  • Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL . (1987). Human breast cancer: correlation of relapes and survival with amplification of the HER-2/neu oncogene. Science 235: 177–182.

    Article  CAS  Google Scholar 

  • Southgate L, Machado RD, Snape KM, Primeau M, Dafou D, Ruddy DM . et al. Gain-of-Function Mutations of ARHGAP31, a Rho family GTPase regulator, cause Syndromic Cutis Aplasia and Limb Anomalies. N Engl J Med (submitted).

  • Tcherkezian J, Danek EI, Jenna S, Triki I, Lamarche-Vane N . (2005). Extracellular signal-regulated kinase 1 interacts with and phosphorylates CdGAP at an important regulatory site. Mol Cell Biol 25: 6314–6329.

    Article  CAS  Google Scholar 

  • Tcherkezian J, Lamarche-Vane N . (2007). Current knowledge of the large RhoGAP family of proteins. Biol Cell 99: 67–86.

    Article  CAS  Google Scholar 

  • Tcherkezian J, Triki I, Stenne R, Danek EI, Lamarche-Vane N . (2006). The human orthologue of CdGAP is a phosphoprotein and a GTPase-activating protein for Cdc42 and Rac1 but not RhoA. Biol Cell 98: 445–456.

    Article  CAS  Google Scholar 

  • Titus B, Schwartz MA, Theodorescu D . (2005). Rho proteins in cell migration and metastasis. Crit Rev Eukaryot Gene Expr 15: 103–114.

    Article  CAS  Google Scholar 

  • Tomar A, Lim ST, Lim Y, Schlaepfer DD . (2009). A FAK-p120RasGAP-p190RhoGAP complex regulates polarity in migrating cells. J Cell Sci 122: 1852–1862.

    Article  CAS  Google Scholar 

  • Tybulewicz VL, Henderson RB . (2009). Rho family GTPases and their regulators in lymphocytes. Nat Rev Immunol 9: 630–644.

    Article  CAS  Google Scholar 

  • Ursini-Siegel J, Schade B, Cardiff RD, Muller WJ . (2007). Insights from transgenic mouse models of ERBB2-induced breast cancer. Nat Rev Cancer 7: 389–397.

    Article  CAS  Google Scholar 

  • Van Aelst L, D'Souza-Schorey C . (1997). Rho GTPases and signaling networks. Genes Dev 11: 2295–2322.

    Article  CAS  Google Scholar 

  • Vega FM, Ridley AJ . (2008). Rho GTPases in cancer cell biology. FEBS Lett 582: 2093–2101.

    Article  CAS  Google Scholar 

  • Wang SE, Wu FY, Shin I, Qu S, Arteaga CL . (2005). Transforming growth factor {beta} (TGF-{beta})-Smad targ. Mol Cell Biol 25: 4703–4715.

    Article  CAS  Google Scholar 

  • Wong CM, Yam JW, Ching YP, Yau TO, Leung TH, Jin DY et al. (2005). Rho GTPase-activating protein deleted in liver cancer suppresses cell proliferation and invasion in hepatocellular carcinoma. Cancer Res 65: 8861–8868.

    Article  CAS  Google Scholar 

  • Xue W, Krasnitz A, Lucito R, Sordella R, Vanaelst L, Cordon-Cardo C et al. (2008). DLC1 is a chromosome 8p tumor suppressor whose loss promotes hepatocellular carcinoma. Genes Dev 22: 1439–1444.

    Article  CAS  Google Scholar 

  • Yang YA, Dukhanina O, Tang B, Mamura M, Letterio JJ, MacGregor J et al. (2002). Lifetime exposure to a soluble TGF-beta antagonist protects mice against metastasis without adverse side effects. J Clin Invest 109: 1607–1615.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from Canadian Institute of Health Research (CIHR) MOP-84449 to NL-V and the Cancer Research Society to PMS. JJN is supported by a studentship from the Research Institute of the McGill University Health Centre. MP was a recipient of a CIHR Canada Graduate scholarship. NL-V is a recipient of a FRSQ chercheur-boursier senior. PMS is a research scientist of the Canadian Cancer Society. RDM is a British Heart Foundation Intermediate Research Fellow (BHF-FS/07/036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Lamarche-Vane.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Y., Northey, J., Primeau, M. et al. CdGAP is required for transforming growth factor β- and Neu/ErbB-2-induced breast cancer cell motility and invasion. Oncogene 30, 1032–1045 (2011). https://doi.org/10.1038/onc.2010.477

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.477

Keywords

This article is cited by

Search

Quick links