Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Harnessing the immune response to treat cancer

Abstract

It is well established that the immune system has the capacity to attack malignant cells. During malignant transformation cells acquire numerous molecular and biochemical changes that render them potentially vulnerable to immune cells. Yet it is self-evident that a growing tumour has managed to evade these host defence mechanisms. The exact ways in which the immune system interacts with tumour cells and how cancers are able to escape immunological eradication have only recently started to be fully elucidated. Understanding the relationship between the tumour and the anti-tumour immune response and how this can be altered with conventional treatments and immune-targeted therapies is crucial to developing new treatments for patients with cancer. In this review, focusing on the anti-tumour T-cell response, we summarize our understanding of how tumours, cancer treatments and the immune system interact, how tumours evade the immune response and how this process could be manipulated for the benefit of patients with cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  • Ahmadzadeh M, Rosenberg SA . (2005). TGF-beta 1 attenuates the acquisition and expression of effector function by tumor antigen-specific human memory CD8 T cells. J Immunol 174: 5215–5223.

    CAS  PubMed Central  Google Scholar 

  • Albert ML, Sauter B, Bhardwaj N . (1998). Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 392: 86–89.

    CAS  Google Scholar 

  • Antonia SJ, Mirza N, Fricke I, Chiappori A, Thompson P, Williams N et al. (2006). Combination of p53 cancer vaccine with chemotherapy in patients with extensive stage small cell lung cancer. Clin Cancer Res 12: 878–887.

    CAS  Google Scholar 

  • Antony PA, Piccirillo CA, Akpinarli A, Finkelstein SE, Speiss PJ, Surman DR et al. (2005). CD8+ T cell immunity against a tumor/self-antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells. J Immunol 174: 2591–2601.

    CAS  PubMed Central  Google Scholar 

  • Apetoh L, Ghiringhelli F, Tesniere A, Criollo A, Ortiz C, Lidereau R et al. (2007a). The interaction between HMGB1 and TLR4 dictates the outcome of anticancer chemotherapy and radiotherapy. Immunol Rev 220: 47–59.

    CAS  Google Scholar 

  • Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A et al. (2007b). Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13: 1050–1059.

    Article  CAS  Google Scholar 

  • Bannard O, Kraman M, Fearon DT . (2009). Secondary replicative function of CD8+ T cells that had developed an effector phenotype. Science 323: 505–509.

    CAS  PubMed Central  Google Scholar 

  • Bennett SR, Carbone FR, Karamalis F, Flavell RA, Miller JF, Heath WR . (1998). Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 393: 478–480.

    CAS  PubMed Central  Google Scholar 

  • Beyer M, Karbach J, Mallmann MR, Zander T, Eggle D, Classen S et al. (2009). Cancer vaccine enhanced, non-tumor-reactive CD8(+) T cells exhibit a distinct molecular program associated with ‘division arrest anergy’. Cancer Res 69: 4346–4354.

    CAS  Google Scholar 

  • Beyer M, Schultze JL . (2006). Regulatory T cells in cancer. Blood 108: 804–811.

    Article  CAS  Google Scholar 

  • Bioley G, Dousset C, Yeh A, Dupont B, Bhardwaj N, Mears G et al. (2009a). Vaccination with recombinant NY-ESO-1 protein elicits immunodominant HLA-DR52b-restricted CD4+ T cell responses with a conserved T cell receptor repertoire. Clin Cancer Res 15: 4467–4474.

    CAS  Google Scholar 

  • Bioley G, Guillaume P, Luescher I, Bhardwaj N, Mears G, Old L et al. (2009b). Vaccination with a recombinant protein encoding the tumor-specific antigen NY-ESO-1 elicits an A2/157-165-specific CTL repertoire structurally distinct and of reduced tumor reactivity than that elicited by spontaneous immune responses to NY-ESO-1-expressing tumors. J Immunother 32: 161–168.

    CAS  Google Scholar 

  • Bioley G, Guillaume P, Luescher I, Yeh A, Dupont B, Bhardwaj N et al. (2009c). HLA class I—associated immunodominance affects CTL responsiveness to an ESO recombinant protein tumor antigen vaccine. Clin Cancer Res 15: 299–306.

    CAS  Google Scholar 

  • Blank C, Brown I, Peterson AC, Spiotto M, Iwai Y, Honjo T et al. (2004). PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8+ T cells. Cancer Res 64: 1140–1145.

    CAS  Google Scholar 

  • Broomfield S, Currie A, van der Most RG, Brown M, van Bruggen I, Robinson BW et al. (2005). Partial, but not complete, tumor-debulking surgery promotes protective antitumor memory when combined with chemotherapy and adjuvant immunotherapy. Cancer Res 65: 7580–7584.

    CAS  Google Scholar 

  • Broomfield SA, van der Most RG, Prosser AC, Mahendran S, Tovey MG, Smyth MJ et al. (2009). Locally administered TLR7 agonists drive systemic antitumor immune responses that are enhanced by anti-CD40 immunotherapy. J Immunol 182: 5217–5224.

    CAS  Google Scholar 

  • Brossart P, Bevan MJ . (1997). Presentation of exogenous protein antigens on major histocompatibility complex class I molecules by dendritic cells: pathway of presentation and regulation by cytokines. Blood 90: 1594–1599.

    CAS  PubMed Central  Google Scholar 

  • Bundell CS, Jackaman C, Suhrbier A, Robinson BW, Nelson DJ . (2006). Functional endogenous cytotoxic T lymphocytes are generated to multiple antigens co-expressed by progressing tumors; after intra-tumoral IL-2 therapy these effector cells eradicate established tumors. Cancer Immunol Immunother 55: 933–947.

    CAS  Google Scholar 

  • Burgdorf S, Kautz A, Bohnert V, Knolle PA, Kurts C . (2007). Distinct pathways of antigen uptake and intracellular routing in CD4 and CD8 T cell activation. Science 316: 612–616.

    CAS  Google Scholar 

  • Burgdorf S, Kurts C . (2008). Endocytosis mechanisms and the cell biology of antigen presentation. Curr Opin Immunol 20: 89–95.

    CAS  Google Scholar 

  • Burgdorf S, Scholz C, Kautz A, Tampe R, Kurts C . (2008). Spatial and mechanistic separation of cross-presentation and endogenous antigen presentation. Nat Immunol 9: 558–566.

    CAS  Google Scholar 

  • Castellino F, Boucher PE, Eichelberg K, Mayhew M, Rothman JE, Houghton AN et al. (2000). Receptor-mediated uptake of antigen/heat shock protein complexes results in major histocompatibility complex class I antigen presentation via two distinct processing pathways. J Exp Med 191: 1957–1964.

    CAS  PubMed Central  Google Scholar 

  • Cella M, Engering A, Pinet V, Pieters J, Lanzavecchia A . (1997). Inflammatory stimuli induce accumulation of MHC class II complexes on dendritic cells. Nature 388: 782–787.

    CAS  Google Scholar 

  • Cella M, Scheidegger D, Palmer-Lehmann K, Lane P, Lanzavecchia A, Alber G . (1996). Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J Exp Med 184: 747–752.

    CAS  Google Scholar 

  • Chaput N, De Botton S, Obeid M, Apetoh L, Ghiringhelli F, Panaretakis T et al. (2007). Molecular determinants of immunogenic cell death: surface exposure of calreticulin makes the difference. J Mol Med 85: 1069–1076.

    CAS  Google Scholar 

  • Chen X, Doffek K, Sugg SL, Shilyansky J . (2004). Phosphatidylserine regulates the maturation of human dendritic cells. J Immunol 173: 2985–2994.

    CAS  Google Scholar 

  • Cloosen S, Arnold J, Thio M, Bos GM, Kyewski B, Germeraad WT . (2007). Expression of tumor-associated differentiation antigens, MUC1 glycoforms and CEA, in human thymic epithelial cells: implications for self-tolerance and tumor therapy. Cancer Res 67: 3919–3926.

    CAS  Google Scholar 

  • Costantino CM, Baecher-Allan CM, Hafler DA . (2008). Human regulatory T cells and autoimmunity. Eur J Immunol 38: 921–924.

    CAS  PubMed Central  Google Scholar 

  • Currie AJ, van der Most RG, Broomfield SA, Prosser AC, Tovey MG, Robinson BW . (2008). Targeting the effector site with IFN-alphabeta-inducing TLR ligands reactivates tumor-resident CD8 T cell responses to eradicate established solid tumors. J Immunol 180: 1535–1544.

    CAS  Google Scholar 

  • Darrasse-Jeze G, Bergot AS, Durgeau A, Billiard F, Salomon BL, Cohen JL et al. (2009). Tumor emergence is sensed by self-specific CD44hi memory Tregs that create a dominant tolerogenic environment for tumors in mice. J Clin Invest 119: 2648–2662.

    CAS  PubMed Central  Google Scholar 

  • Deeths MJ, Kedl RM, Mescher MF . (1999). CD8+ T cells become nonresponsive (anergic) following activation in the presence of costimulation. J Immunol 163: 102–110.

    CAS  Google Scholar 

  • Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB et al. (2002). Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8: 793–800.

    CAS  PubMed Central  Google Scholar 

  • Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ et al. (2002). Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298: 850–854.

    CAS  PubMed Central  Google Scholar 

  • Dummer W, Niethammer AG, Baccala R, Lawson BR, Wagner N, Reisfeld RA et al. (2002). T cell homeostatic proliferation elicits effective antitumor autoimmunity. J Clin Invest 110: 185–192.

    CAS  PubMed Central  Google Scholar 

  • Edinger AL, Thompson CB . (2004). Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol 16: 663–669.

    CAS  Google Scholar 

  • Elliott RL, Blobe GC . (2005). Role of transforming growth factor beta in human cancer. J Clin Oncol 23: 2078–2093.

    CAS  Google Scholar 

  • Feau S, Schoenberger SP . (2009). Immunology. Ex uno plura. Science 323: 466–467.

    CAS  PubMed Central  Google Scholar 

  • Feng H, Zeng Y, Graner MW, Katsanis E . (2002). Stressed apoptotic tumor cells stimulate dendritic cells and induce specific cytotoxic T cells. Blood 100: 4108–4115.

    CAS  Google Scholar 

  • Fife BT, Guleria I, Gubbels Bupp M, Eagar TN, Tang Q, Bour-Jordan H et al. (2006). Insulin-induced remission in new-onset NOD mice is maintained by the PD-1-PD-L1 pathway. J Exp Med 203: 2737–2747.

    CAS  PubMed Central  Google Scholar 

  • Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, Rudensky AY . (2005). Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 22: 329–341.

    CAS  Google Scholar 

  • Frey DM, Droeser RA, Viehl CT, Zlobec I, Lugli A, Zingg U et al. (2009). High frequency of tumor-infiltrating FOXP3(+) regulatory T cells predicts improved survival in mismatch repair-proficient colorectal cancer patients. Int J Cancer 126: 2635–2643.

    Google Scholar 

  • Gajewski TF, Meng Y, Harlin H . (2006). Immune suppression in the tumor microenvironment. J Immunother 29: 233–240.

    CAS  Google Scholar 

  • Ghiringhelli F, Apetoh L, Tesniere A, Aymeric L, Ma Y, Ortiz C et al. (2009). Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat Med 15: 1170–1178.

    CAS  Google Scholar 

  • Ghiringhelli F, Larmonier N, Schmitt E, Parcellier A, Cathelin D, Garrido C et al. (2004). CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur J Immunol 34: 336–344.

    CAS  Google Scholar 

  • Ghiringhelli F, Menard C, Puig PE, Ladoire S, Roux S, Martin F et al. (2007). Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother 56: 641–648.

    CAS  Google Scholar 

  • Ghiringhelli F, Puig PE, Roux S, Parcellier A, Schmitt E, Solary E et al. (2005). Tumor cells convert immature myeloid dendritic cells into TGF-beta-secreting cells inducing CD4+CD25+ regulatory T cell proliferation. J Exp Med 202: 919–929.

    CAS  PubMed Central  Google Scholar 

  • Gilboa E . (2001). The risk of autoimmunity associated with tumor immunotherapy. Nat Immunol 2: 789–792.

    CAS  Google Scholar 

  • Guermonprez P, Valladeau J, Zitvogel L, Thery C, Amigorena S . (2002). Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol 20: 621–667.

    CAS  Google Scholar 

  • Hamilton DH, Bretscher PA . (2008). Different immune correlates associated with tumor progression and regression: implications for prevention and treatment of cancer. Cancer Immunol Immunother 57: 1125–1136.

    CAS  Google Scholar 

  • Hipp MM, Hilf N, Walter S, Werth D, Brauer KM, Radsak MP et al. (2008). Sorafenib, but not sunitinib, affects function of dendritic cells and induction of primary immune responses. Blood 111: 5610–5620.

    CAS  Google Scholar 

  • Hodi FS . (2007). Cytotoxic T-lymphocyte-associated antigen-4. Clin Cancer Res 13: 5238–5242.

    CAS  Google Scholar 

  • Houde M, Bertholet S, Gagnon E, Brunet S, Goyette G, Laplante A et al. (2003). Phagosomes are competent organelles for antigen cross-presentation. Nature 425: 402–406.

    CAS  Google Scholar 

  • Hu HM, Poehlein CH, Urba WJ, Fox BA . (2002). Development of antitumor immune responses in reconstituted lymphopenic hosts. Cancer Res 62: 3914–3919.

    CAS  Google Scholar 

  • Huehn J, Siegmund K, Lehmann JC, Siewert C, Haubold U, Feuerer M et al. (2004). Developmental stage, phenotype, and migration distinguish naive- and effector/memory-like CD4+ regulatory T cells. J Exp Med 199: 303–313.

    CAS  PubMed Central  Google Scholar 

  • Hwang ML, Lukens JR, Bullock TN . (2007). Cognate memory CD4+ T cells generated with dendritic cell priming influence the expansion, trafficking, and differentiation of secondary CD8+ T cells and enhance tumor control. J Immunol 179: 5829–5838.

    CAS  Google Scholar 

  • Jackaman C, Bundell CS, Kinnear BF, Smith AM, Filion P, van Hagen D et al. (2003). IL-2 intratumoral immunotherapy enhances CD8+ T cells that mediate destruction of tumor cells and tumor-associated vasculature: a novel mechanism for IL-2. J Immunol 171: 5051–5063.

    CAS  Google Scholar 

  • Jackaman C, Lew AM, Zhan Y, Allan JE, Koloska B, Graham PT et al. (2008). Deliberately provoking local inflammation drives tumors to become their own protective vaccine site. Int Immunol 20: 1467–1479.

    CAS  Google Scholar 

  • Janssen EM, Droin NM, Lemmens EE, Pinkoski MJ, Bensinger SJ, Ehst BD et al. (2005). CD4+ T-cell help controls CD8+ T-cell memory via TRAIL-mediated activation-induced cell death. Nature 434: 88–93.

    CAS  PubMed Central  Google Scholar 

  • Javid B, MacAry PA, Lehner PJ . (2007). Structure and function: heat shock proteins and adaptive immunity. J Immunol 179: 2035–2040.

    CAS  Google Scholar 

  • Kaminski JM, Shinohara E, Summers JB, Niermann KJ, Morimoto A, Brousal J . (2005). The controversial abscopal effect. Cancer Treat Rev 31: 159–172.

    CAS  Google Scholar 

  • Kennedy R, Celis E . (2006). T helper lymphocytes rescue CTL from activation-induced cell death. J Immunol 177: 2862–2872.

    CAS  PubMed Central  Google Scholar 

  • Kennedy R, Celis E . (2008). Multiple roles for CD4+ T cells in anti-tumor immune responses. Immunol Rev 222: 129–144.

    CAS  Google Scholar 

  • Kenter GG, Welters MJ, Valentijn AR, Lowik MJ, Berends-van der Meer DM, Vloon AP et al. (2009). Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N Engl J Med 361: 1838–1847.

    CAS  Google Scholar 

  • Kim S, Buchlis G, Fridlender ZG, Sun J, Kapoor V, Cheng G et al. (2008). Systemic blockade of transforming growth factor-beta signaling augments the efficacy of immunogene therapy. Cancer Res 68: 10247–10256.

    CAS  PubMed Central  Google Scholar 

  • Kim S, Elkon KB, Ma X . (2004). Transcriptional suppression of interleukin-12 gene expression following phagocytosis of apoptotic cells. Immunity 21: 643–653.

    CAS  Google Scholar 

  • Ko JS, Zea AH, Rini BI, Ireland JL, Elson P, Cohen P et al. (2009). Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin Cancer Res 15: 2148–2157.

    CAS  Google Scholar 

  • Kryczek I, Banerjee M, Cheng P, Vatan L, Szeliga W, Wei S et al. (2009). Phenotype, distribution, generation, and functional and clinical relevance of Th17 cells in the human tumor environments. Blood 114: 1141–1149.

    CAS  PubMed Central  Google Scholar 

  • Lake RA, Robinson BW . (2005). Immunotherapy and chemotherapy—a practical partnership. Nat Rev Cancer 5: 397–405.

    CAS  PubMed Central  Google Scholar 

  • Larmonier N, Janikashvili N, LaCasse CJ, Larmonier CB, Cantrell J, Situ E et al. (2008). Imatinib mesylate inhibits CD4+ CD25+ regulatory T cell activity and enhances active immunotherapy against BCR-ABL- tumors. J Immunol 181: 6955–6963.

    CAS  PubMed Central  Google Scholar 

  • Lennerz V, Fatho M, Gentilini C, Frye RA, Lifke A, Ferel D et al. (2005). The response of autologous T cells to a human melanoma is dominated by mutated neoantigens. Proc Natl Acad Sci USA 102: 16013–16018.

    CAS  PubMed Central  Google Scholar 

  • Li H, Ambade A, Re F . (2009). Cutting edge: necrosis activates the NLRP3 inflammasome. J Immunol 183: 1528–1532.

    CAS  Google Scholar 

  • Li M, Davey GM, Sutherland RM, Kurts C, Lew AM, Hirst C et al. (2001). Cell-associated ovalbumin is cross-presented much more efficiently than soluble ovalbumin in vivo. J Immunol 166: 6099–6103.

    CAS  Google Scholar 

  • Linard B, Bezieau S, Benlalam H, Labarriere N, Guilloux Y, Diez E et al. (2002). A ras-mutated peptide targeted by CTL infiltrating a human melanoma lesion. J Immunol 168: 4802–4808.

    CAS  Google Scholar 

  • Lob S, Konigsrainer A, Rammensee HG, Opelz G, Terness P . (2009). Inhibitors of indoleamine-2,3-dioxygenase for cancer therapy: can we see the wood for the trees? Nat Rev Cancer 9: 445–452.

    Google Scholar 

  • Lutsiak ME, Semnani RT, De Pascalis R, Kashmiri SV, Schlom J, Sabzevari H . (2005). Inhibition of CD4(+)25+ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide. Blood 105: 2862–2868.

    CAS  Google Scholar 

  • Martin-Orozco N, Muranski P, Chung Y, Yang XO, Yamazaki T, Lu S et al. (2009). T helper 17 cells promote cytotoxic T cell activation in tumor immunity. Immunity 31: 787–798.

    CAS  PubMed Central  Google Scholar 

  • Martins I, Tesniere A, Kepp O, Michaud M, Schlemmer F, Senovilla L et al. (2009). Chemotherapy induces ATP release from tumor cells. Cell Cycle 8: 3723–3728.

    CAS  Google Scholar 

  • Marzo AL, Fitzpatrick DR, Robinson BW, Scott B . (1997). Antisense oligonucleotides specific for transforming growth factor beta2 inhibit the growth of malignant mesothelioma both in vitro and in vivo. Cancer Res 57: 3200–3207.

    CAS  Google Scholar 

  • Marzo AL, Kinnear BF, Lake RA, Frelinger JJ, Collins EJ, Robinson BW et al. (2000). Tumor-specific CD4+ T cells have a major ‘post-licensing’ role in CTL mediated anti-tumor immunity. J Immunol 165: 6047–6055.

    CAS  Google Scholar 

  • Marzo AL, Lake RA, Lo D, Sherman L, McWilliam A, Nelson D et al. (1999). Tumor antigens are constitutively presented in the draining lymph nodes. J Immunol 162: 5838–5845.

    CAS  Google Scholar 

  • Mattarollo SR, Kenna T, Nieda M, Nicol AJ . (2006). Chemotherapy pretreatment sensitizes solid tumor-derived cell lines to V alpha 24+ NKT cell-mediated cytotoxicity. Int J Cancer 119: 1630–1637.

    CAS  Google Scholar 

  • Matzinger P . (2002). The danger model: a renewed sense of self. Science 296: 301–305.

    CAS  Google Scholar 

  • Mescher MF, Popescu FE, Gerner M, Hammerbeck CD, Curtsinger JM . (2007). Activation-induced non-responsiveness (anergy) limits CD8 T cell responses to tumors. Semin Cancer Biol 17: 299–308.

    CAS  PubMed Central  Google Scholar 

  • Nelson D, Bundell C, Robinson B . (2000). in vivo cross-presentation of a soluble protein antigen: kinetics, distribution, and generation of effector CTL recognizing dominant and subdominant epitopes. J Immunol 165: 6123–6132.

    CAS  Google Scholar 

  • Nelson DJ, Mukherjee S, Bundell C, Fisher S, van Hagen D, Robinson B . (2001). Tumor progression despite efficient tumor antigen cross-presentation and effective ‘arming’ of tumor antigen-specific CTL. J Immunol 166: 5557–5566.

    CAS  Google Scholar 

  • Nishikawa H, Kato T, Tanida K, Hiasa A, Tawara I, Ikeda H et al. (2003). CD4+ CD25+ T cells responding to serologically defined autoantigens suppress antitumor immune responses. Proc Natl Acad Sci USA 100: 10902–10906.

    CAS  Google Scholar 

  • Nishimura T, Nakui M, Sato M, Iwakabe K, Kitamura H, Sekimoto M et al. (2000). The critical role of Th1-dominant immunity in tumor immunology. Cancer Chemother Pharmacol 46 (Suppl): S52–S61.

    CAS  Google Scholar 

  • Nowak AK, Lake RA, Marzo AL, Scott B, Heath WR, Collins EJ et al. (2003a). Induction of tumor cell apoptosis in vivo increases tumor antigen cross-presentation, cross-priming rather than cross-tolerizing host tumor-specific CD8 T cells. J Immunol 170: 4905–4913.

    CAS  Google Scholar 

  • Nowak AK, Lake RA, Robinson BW . (2006). Combined chemoimmunotherapy of solid tumours: improving vaccines? Adv Drug Deliv Rev 58: 975–990.

    CAS  Google Scholar 

  • Nowak AK, Robinson BW, Lake RA . (2003b). Synergy between chemotherapy and immunotherapy in the treatment of established murine solid tumors. Cancer Res 63: 4490–4496.

    CAS  Google Scholar 

  • Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini JL et al. (2007). Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 13: 54–61.

    CAS  PubMed Central  Google Scholar 

  • Ohlen C, Kalos M, Cheng LE, Shur AC, Hong DJ, Carson BD et al. (2002). CD8(+) T cell tolerance to a tumor-associated antigen is maintained at the level of expansion rather than effector function. J Exp Med 195: 1407–1418.

    CAS  PubMed Central  Google Scholar 

  • Okada H, Mak TW . (2004). Pathways of apoptotic and non-apoptotic death in tumour cells. Nat Rev Cancer 4: 592–603.

    CAS  PubMed Central  Google Scholar 

  • Onizuka S, Tawara I, Shimizu J, Sakaguchi S, Fujita T, Nakayama E . (1999). Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor alpha) monoclonal antibody. Cancer Res 59: 3128–3133.

    CAS  PubMed Central  Google Scholar 

  • Panaretakis T, Joza N, Modjtahedi N, Tesniere A, Vitale I, Durchschlag M et al. (2008). The co-translocation of ERp57 and calreticulin determines the immunogenicity of cell death. Cell Death Differ 15: 1499–1509.

    CAS  Google Scholar 

  • Pleasance ED, Cheetham RK, Stephens PJ, McBride DJ, Humphray SJ, Greenman CD et al. (2009a). A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 463: 191–196.

    PubMed Central  Google Scholar 

  • Pleasance ED, Stephens PJ, O′Meara S, McBride DJ, Meynert A, Jones D et al. (2009b). A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature 463: 184–190.

    PubMed Central  Google Scholar 

  • Poitrasson-Riviere M, Bienvenu B, Le Campion A, Becourt C, Martin B, Lucas B . (2008). Regulatory CD4+ T cells are crucial for preventing CD8+ T cell-mediated autoimmunity. J Immunol 180: 7294–7304.

    CAS  Google Scholar 

  • Rad AN, Pollara G, Sohaib SM, Chiang C, Chain BM, Katz DR . (2003). The differential influence of allogeneic tumor cell death via DNA damage on dendritic cell maturation and antigen presentation. Cancer Res 63: 5143–5150.

    CAS  Google Scholar 

  • Rech AJ, Vonderheide RH . (2009). Clinical use of anti-CD25 antibody daclizumab to enhance immune responses to tumor antigen vaccination by targeting regulatory T cells. Ann NY Acad Sci 1174: 99–106.

    CAS  Google Scholar 

  • Reits EA, Hodge JW, Herberts CA, Groothuis TA, Chakraborty M, Wansley EK et al. (2006). Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med 203: 1259–1271.

    CAS  PubMed Central  Google Scholar 

  • Restifo NP . (2000). Building better vaccines: how apoptotic cell death can induce inflammation and activate innate and adaptive immunity. Curr Opin Immunol 12: 597–603.

    CAS  PubMed Central  Google Scholar 

  • Restifo NP, Marincola FM, Kawakami Y, Taubenberger J, Yannelli JR, Rosenberg SA . (1996). Loss of functional beta 2-microglobulin in metastatic melanomas from five patients receiving immunotherapy. J Natl Cancer Inst 88: 100–108.

    CAS  PubMed Central  Google Scholar 

  • Robinson BW, Lake RA, Nelson DJ, Scott BA, Marzo AL . (1999). Cross-presentation of tumour antigens: evaluation of threshold, duration, distribution and regulation. Immunol Cell Biol 77: 552–558.

    CAS  Google Scholar 

  • Robinson BW, Scott BM, Lake RA, Stumbles PA, Nelson DJ, Fisher S et al. (2001). Lack of ignorance to tumor antigens: evaluation using nominal antigen transfection and T-cell receptor transgenic lymphocytes in Lyons–Parish analysis—implications for tumor tolerance. Clin Cancer Res 7: 811s–8817s.

    CAS  Google Scholar 

  • Rosenberg SA, Sherry RM, Morton KE, Scharfman WJ, Yang JC, Topalian SL et al. (2005). Tumor progression can occur despite the induction of very high levels of self/tumor antigen-specific CD8+ T cells in patients with melanoma. J Immunol 175: 6169–6176.

    CAS  Google Scholar 

  • Rovere P, Sabbadini MG, Vallinoto C, Fascio U, Zimmermann VS, Bondanza A et al. (1999). Delayed clearance of apoptotic lymphoma cells allows cross-presentation of intracellular antigens by mature dendritic cells. J Leukoc Biol 66: 345–349.

    CAS  Google Scholar 

  • Rudge G, Barrett SP, Scott B, van Driel IR . (2007). Infiltration of a mesothelioma by IFN-gamma-producing cells and tumor rejection after depletion of regulatory T cells. J Immunol 178: 4089–4096.

    CAS  Google Scholar 

  • Salama P, Phillips M, Grieu F, Morris M, Zeps N, Joseph D et al. (2009). Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. J Clin Oncol 27: 186–192.

    Google Scholar 

  • Sarween N, Chodos A, Raykundalia C, Khan M, Abbas AK, Walker LS . (2004). CD4+CD25+ cells controlling a pathogenic CD4 response inhibit cytokine differentiation, CXCR-3 expression, and tissue invasion. J Immunol 173: 2942–2951.

    CAS  Google Scholar 

  • Savina A, Jancic C, Hugues S, Guermonprez P, Vargas P, Moura IC et al. (2006). NOX2 controls phagosomal pH to regulate antigen processing during cross-presentation by dendritic cells. Cell 126: 205–218.

    CAS  Google Scholar 

  • Schietinger A, Philip M, Schreiber H . (2008). Specificity in cancer immunotherapy. Semin Immunol 20: 276–285.

    CAS  PubMed Central  Google Scholar 

  • Shi Y, Evans JE, Rock KL . (2003). Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425: 516–521.

    CAS  Google Scholar 

  • Sinai P, Berg RE, Haynie JM, Egorin MJ, Ilaria Jr RL, Forman J . (2007). Imatinib mesylate inhibits antigen-specific memory CD8 T cell responses in vivo. J Immunol 178: 2028–2037.

    CAS  Google Scholar 

  • Skoberne M, Beignon AS, Bhardwaj N . (2004). Danger signals: a time and space continuum. Trends Mol Med 10: 251–257.

    CAS  Google Scholar 

  • Srivastava N, Srivastava PK . (2009). Modeling the repertoire of true tumor-specific MHC I epitopes in a human tumor. PLoS One 4: e6094.

    PubMed Central  Google Scholar 

  • Stumbles PA, Himbeck R, Frelinger JA, Collins EJ, Lake RA, Robinson BW . (2004). Cutting edge: tumor-specific CTL are constitutively cross-armed in draining lymph nodes and transiently disseminate to mediate tumor regression following systemic CD40 activation. J Immunol 173: 5923–5928.

    CAS  Google Scholar 

  • Suzuki E, Kapoor V, Jassar AS, Kaiser LR, Albelda SM . (2005). Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin Cancer Res 11: 6713–6721.

    CAS  Google Scholar 

  • Tanchot C, Guillaume S, Delon J, Bourgeois C, Franzke A, Sarukhan A et al. (1998). Modifications of CD8+ T cell function during in vivo memory or tolerance induction. Immunity 8: 581–590.

    CAS  Google Scholar 

  • Tesniere A, Schlemmer F, Boige V, Kepp O, Martins I, Ghiringhelli F et al. (2010). Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene 29: 482–491.

    CAS  PubMed Central  Google Scholar 

  • Tomlinson I, Sasieni P, Bodmer W . (2002). How many mutations in a cancer? Am J Pathol 160: 755–758.

    PubMed Central  Google Scholar 

  • Uyttenhove C, Pilotte L, Theate I, Stroobant V, Colau D, Parmentier N et al. (2003). Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med 9: 1269–1274.

    CAS  PubMed Central  Google Scholar 

  • van der Bruggen P . (2009). T cell defined tumour antigens (http://www.cancerimmunity.org/peptidedatabase/Tcellepitopes.htm).

  • van der Most RG, Currie A, Robinson BW, Lake RA . (2006). Cranking the immunologic engine with chemotherapy: using context to drive tumor antigen cross-presentation towards useful antitumor immunity. Cancer Res 66: 601–604.

    Google Scholar 

  • van der Most RG, Currie AJ, Cleaver AL, Salmons J, Nowak AK, Mahendran S et al. (2009a). Cyclophosphamide chemotherapy sensitizes tumor cells to TRAIL-dependent CD8 T cell-mediated immune attack resulting in suppression of tumor growth. PLoS One 4: e6982.

    PubMed Central  Google Scholar 

  • van der Most RG, Currie AJ, Mahendran S, Prosser A, Darabi A, Robinson BW et al. (2009b). Tumor eradication after cyclophosphamide depends on concurrent depletion of regulatory T cells: a role for cycling TNFR2-expressing effector-suppressor T cells in limiting effective chemotherapy. Cancer Immunol Immunother 58: 1219–1228.

    CAS  Google Scholar 

  • Villablanca EJ, Raccosta L, Zhou D, Fontana R, Maggioni D, Negro A et al. (2010). Tumor-mediated liver X receptor-alpha activation inhibits CC chemokine receptor-7 expression on dendritic cells and dampens antitumor responses. Nat Med 16: 98–105.

    CAS  Google Scholar 

  • von Boehmer H . (2005). Mechanisms of suppression by suppressor T cells. Nat Immunol 6: 338–344.

    CAS  PubMed Central  Google Scholar 

  • Wang HY, Peng G, Guo Z, Shevach EM, Wang RF . (2005). Recognition of a new ARTC1 peptide ligand uniquely expressed in tumor cells by antigen-specific CD4+ regulatory T cells. J Immunol 174: 2661–2670.

    CAS  PubMed Central  Google Scholar 

  • Watson NF, Ramage JM, Madjd Z, Spendlove I, Ellis IO, Scholefield JH et al. (2006). Immunosurveillance is active in colorectal cancer as downregulation but not complete loss of MHC class I expression correlates with a poor prognosis. Int J Cancer 118: 6–10.

    CAS  Google Scholar 

  • Weir BA, Woo MS, Getz G, Perner S, Ding L, Beroukhim R et al. (2007). Characterizing the cancer genome in lung adenocarcinoma. Nature 450: 893–898.

    CAS  PubMed Central  Google Scholar 

  • Welters MJ, Kenter GG, de Vos van Steenwijk PJ, Lowik MJ, Berends-van der Meer DM, Essahsah F et al. (2010). Success or failure of vaccination for HPV16-positive vulvar lesions correlates with kinetics and phenotype of induced T-cell responses. Proc Natl Acad Sci USA 107: 11895–11899.

    CAS  Google Scholar 

  • Williams MA, Tyznik AJ, Bevan MJ . (2006). Interleukin-2 signals during priming are required for secondary expansion of CD8+ memory T cells. Nature 441: 890–893.

    CAS  PubMed Central  Google Scholar 

  • Wolchok JD, Saenger Y . (2008). The mechanism of anti-CTLA-4 activity and the negative regulation of T-cell activation. Oncologist 13 (Suppl 4): 2 9.

    CAS  Google Scholar 

  • Wortzel RD, Urban JL, Philipps C, Fitch FW, Schreiber H . (1983). Independent immunodominant and immunorecessive tumor-specific antigens on a malignant tumor: antigenic dissection with cytolytic T cell clones. J Immunol 130: 2461–2466.

    CAS  Google Scholar 

  • Xiao T . (2009). Innate immune recognition of nucleic acids. Immunol Res 43: 98–108.

    CAS  PubMed Central  Google Scholar 

  • Yuan J, Gnjatic S, Li H, Powel S, Gallardo HF, Ritter E et al. (2008). CTLA-4 blockade enhances polyfunctional NY-ESO-1 specific T cell responses in metastatic melanoma patients with clinical benefit. Proc Natl Acad Sci USA 105: 20410–20415.

    CAS  Google Scholar 

  • Zheng X, Koropatnick J, Li M, Zhang X, Ling F, Ren X et al. (2006). Reinstalling antitumor immunity by inhibiting tumor-derived immunosuppressive molecule IDO through RNA interference. J Immunol 177: 5639–5646.

    CAS  Google Scholar 

  • Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G . (2008). Immunological aspects of cancer chemotherapy. Nat Rev Immunol 8: 59–73.

    CAS  Google Scholar 

  • Zou W, Chen L . (2008). Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev. Immunol 8: 467–477.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H J Steer.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steer, H., Lake, R., Nowak, A. et al. Harnessing the immune response to treat cancer. Oncogene 29, 6301–6313 (2010). https://doi.org/10.1038/onc.2010.437

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.437

Keywords

This article is cited by

Search

Quick links