Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Id1 enhances RING1b E3 ubiquitin ligase activity through the Mel-18/Bmi-1 polycomb group complex

Abstract

The helix–loop–helix inhibitor of differentiation and DNA binding (Id1) is well known as an oncogene in various tumors. Although it has been reported that Id1 promotes several oncogenic processes, it is still unclear whether Id1 functions through epigenetic transcriptional regulation. In this study, we examined the effect of Id1 on polycomb group (PcG) proteins, which are crucial epigenetic gene silencers, and found that Id1 regulated the expression of Mel-18 and Bmi-1, both of which belong to polycomb repressive complex 1. We also confirmed that Id1 induced Mel-18 downregulation, which was mediated by the Akt pathway, and consequently upregulated the transcription of its target gene, c-Myc. Using a promoter–reporter, we demonstrated that Id1 regulated Bmi-1 transcription through c-Myc binding to its E-box in the promoter. Finally, we examined the activity of E3 ligase RING1b, whose catalytic activity is increased by binding with the RING finger protein Bmi-1, and found that Id1 overexpression enhanced RING1b E3 ligase activity leading to accumulation of H2A ubiquitination and ubiquitin/proteasome-mediated degradation of geminin. Taken together, our study provided a novel link between Id1 and PcG proteins and suggested that Id1 may contribute to tumor development through PcG-mediated epigenetic regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Bernardi R, Liebermann DA, Hoffman B . (2000). Cdc25A stability is controlled by the ubiquitin-proteasome pathway during cell cycle progression and terminal differentiation. Oncogene 19: 2447–2454.

    Article  CAS  Google Scholar 

  • Buchwald G, van der Stoop P, Weichenrieder O, Perrakis A, van Lohuizen M, Sixma TK . (2006). Structure and E3-ligase activity of the Ring-Ring complex of polycomb proteins Bmi1 and Ring1b. EMBO J 25: 2465–2474.

    Article  CAS  Google Scholar 

  • Cales C, Roman-Trufero M, Pavon L, Serrano I, Melgar T, Endoh M et al. (2008). Inactivation of the polycomb group protein Ring1B unveils an antiproliferative role in hematopoietic cell expansion and cooperation with tumorigenesis associated with Ink4a deletion. Mol Cell Biol 28: 1018–1028.

    Article  CAS  Google Scholar 

  • Cao R, Tsukada Y, Zhang Y . (2005). Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. Mol Cell 20: 845–854.

    Article  CAS  Google Scholar 

  • Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P et al. (2002). Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298: 1039–1043.

    Article  CAS  Google Scholar 

  • Choi YS, Jeong S . (2005). PI3-kinase and PDK-1 regulate HDAC1-mediated transcriptional repression of transcription factor NF-kappaB. Mol Cells 20: 241–246.

    CAS  PubMed  Google Scholar 

  • Elderkin S, Maertens GN, Endoh M, Mallery DL, Morrice N, Koseki H et al. (2007). A phosphorylated form of Mel-18 targets the Ring1B histone H2A ubiquitin ligase to chromatin. Mol Cell 28: 107–120.

    Article  CAS  Google Scholar 

  • Gao H, Yu Z, Bi D, Jiang L, Cui Y, Sun J et al. (2007). Akt/PKB interacts with the histone H3 methyltransferase SETDB1 and coordinates to silence gene expression. Mol Cell Biochem 305: 35–44.

    Article  CAS  Google Scholar 

  • Geng H, Rademacher BL, Pittsenbarger J, Huang CY, Harvey CT, Lafortune MC et al. (2010). ID1 enhances docetaxel cytotoxicity in prostate cancer cells through inhibition of p21. Cancer Res 70: 3239–3248.

    Article  CAS  Google Scholar 

  • Guo WJ, Datta S, Band V, Dimri GP . (2007). Mel-18, a polycomb group protein, regulates cell proliferation and senescence via transcriptional repression of Bmi-1 and c-Myc oncoproteins. Mol Biol Cell 18: 536–546.

    Article  CAS  Google Scholar 

  • Hattori T, Kitagawa K, Uchida C, Oda T, Kitagawa M . (2003). Cks1 is degraded via the ubiquitin-proteasome pathway in a cell cycle-dependent manner. Genes Cells 8: 889–896.

    Article  CAS  Google Scholar 

  • Jang KS, Han HX, Paik SS, Brown PH, Kong G . (2006). Id-1 overexpression in invasive ductal carcinoma cells is significantly associated with intratumoral microvessel density in ER-negative/node-positive breast cancer. Cancer Lett 244: 203–210.

    Article  CAS  Google Scholar 

  • Kanno M, Hasegawa M, Ishida A, Isono K, Taniguchi M . (1995). Mel-18, a Polycomb group-related mammalian gene, encodes a transcriptional negative regulator with tumor suppressive activity. EMBO J 14: 5672–5678.

    Article  CAS  Google Scholar 

  • Kim H, Chung H, Kim HJ, Lee JY, Oh MY, Kim Y et al. (2008). Id-1 regulates Bcl-2 and Bax expression through p53 and NF-kappaB in MCF-7 breast cancer cells. Breast Cancer Res Treat 112: 287–296.

    Article  CAS  Google Scholar 

  • Kim HJ, Chung H, Yoo YG, Kim H, Lee JY, Lee MO et al. (2007). Inhibitor of DNA binding 1 activates vascular endothelial growth factor through enhancing the stability and activity of hypoxia-inducible factor-1alpha. Mol Cancer Res 5: 321–329.

    Article  CAS  Google Scholar 

  • Kroll KL . (2007). Geminin in embryonic development: coordinating transcription and the cell cycle during differentiation. Front Biosci 12: 1395–1409.

    Article  CAS  Google Scholar 

  • Lasorella A, Noseda M, Beyna M, Yokota Y, Iavarone A . (2000). Id2 is a retinoblastoma protein target and mediates signalling by Myc oncoproteins. Nature 407: 592–598.

    Article  CAS  Google Scholar 

  • Li B, Tsao SW, Li YY, Wang X, Ling MT, Wong YC et al. (2009). Id-1 promotes tumorigenicity and metastasis of human esophageal cancer cells through activation of PI3K/AKT signaling pathway. Int J Cancer 125: 2576–2585.

    Article  CAS  Google Scholar 

  • Lin J, Guan Z, Wang C, Feng L, Zheng Y, Caicedo E et al. (2010). Inhibitor of differentiation 1 contributes to head and neck squamous cell carcinoma survival via the NF-kappaB/survivin and phosphoinositide 3-kinase/Akt signaling pathways. Clin Cancer Res 16: 77–87.

    Article  CAS  Google Scholar 

  • Lee JY, Jang KS, Shin DH, Oh MY, Kim HJ, Kim Y et al. (2008). Mel-18 negatively regulates INK4a/ARF-independent cell cycle progression via Akt inactivation in breast cancer. Cancer Res 68: 4201–4209.

    Article  CAS  Google Scholar 

  • Lee JY, Kang MB, Jang SH, Qian T, Kim HJ, Kim CH et al. (2009). Id-1 activates Akt-mediated Wnt signaling and p27(Kip1) phosphorylation through PTEN inhibition. Oncogene 28: 824–831.

    Article  CAS  Google Scholar 

  • Lessard J, Sauvageau G . (2003). Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 423: 255–260.

    Article  CAS  Google Scholar 

  • Levine SS, King IF, Kingston RE . (2004). Division of labor in polycomb group repression. Trends Biochem Sci 29: 478–485.

    Article  CAS  Google Scholar 

  • Li B, Cheung PY, Wang X, Tsao SW, Ling MT, Wong YC et al. (2007). Id-1 activation of PI3K/Akt/NFkappaB signaling pathway and its significance in promoting survival of esophageal cancer cells. Carcinogenesis 28: 2313–2320.

    Article  CAS  Google Scholar 

  • Li Z, Cao R, Wang M, Myers MP, Zhang Y, Xu RM . (2006). Structure of a Bmi-1-Ring1B polycomb group ubiquitin ligase complex. J Biol Chem 281: 20643–20649.

    Article  CAS  Google Scholar 

  • Ling MT, Wang X, Zhang X, Wong YC . (2006). The multiple roles of Id-1 in cancer progression. Differentiation 74: 481–487.

    Article  CAS  Google Scholar 

  • Liu S, Dontu G, Mantle ID, Patel S, Ahn NS, Jackson KW et al. (2006). Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 66: 6063–6071.

    Article  CAS  Google Scholar 

  • Lund AH, van Lohuizen M . (2004). Polycomb complexes and silencing mechanisms. Curr Opin Cell Biol 16: 239–246.

    Article  CAS  Google Scholar 

  • Matsuo F, Yano K, Saito H, Morotomi K, Kato M, Yoshimoto M et al. (2002). Mutation analysis of the mel-18 gene that shows decreased expression in human breast cancer cell lines. Breast Cancer 9: 33–38.

    Article  Google Scholar 

  • McGarry TJ, Kirschner MW . (1998). Geminin, an inhibitor of DNA replication, is degraded during mitosis. Cell 93: 1043–1053.

    Article  CAS  Google Scholar 

  • Ohtsubo M, Yasunaga S, Ohno Y, Tsumura M, Okada S, Ishikawa N et al. (2008). Polycomb-group complex 1 acts as an E3 ubiquitin ligase for Geminin to sustain hematopoietic stem cell activity. Proc Natl Acad Sci USA 105: 10396–10401.

    Article  CAS  Google Scholar 

  • Park IK, Qian D, Kiel M, Becker MW, Pihalja M, Weissman IL et al. (2003). Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423: 302–305.

    Article  CAS  Google Scholar 

  • Saxena S, Dutta A . (2005). Geminin-Cdt1 balance is critical for genetic stability. Mutat Res 569: 111–121.

    Article  CAS  Google Scholar 

  • Seo S, Herr A, Lim JW, Richardson GA, Richardson H, Kroll KL . (2005). Geminin regulates neuronal differentiation by antagonizing Brg1 activity. Genes Dev 19: 1723–1734.

    Article  CAS  Google Scholar 

  • Singh J, Murata K, Itahana Y, Desprez PY . (2002). Constitutive expression of the Id-1 promoter in human metastatic breast cancer cells is linked with the loss of NF-1/Rb/HDAC-1 transcription repressor complex. Oncogene 21: 1812–1822.

    Article  CAS  Google Scholar 

  • Sparmann A, van Lohuizen M . (2006). Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer 6: 846–856.

    Article  CAS  Google Scholar 

  • Swarbrick A, Akerfeldt MC, Lee CS, Sergio CM, Caldon CE, Hunter LJ et al. (2005). Regulation of cyclin expression and cell cycle progression in breast epithelial cells by the helix-loop-helix protein Id1. Oncogene 24: 381–389.

    Article  CAS  Google Scholar 

  • Tang X, Jang SW, Wang X, Liu Z, Bahr SM, Sun SY et al. (2007). Akt phosphorylation regulates the tumour-suppressor merlin through ubiquitination and degradation. Nat Cell Biol 9: 1199–1207.

    Article  CAS  Google Scholar 

  • van der Stoop P, Boutsma EA, Hulsman D, Noback S, Heimerikx M, Kerkhoven RM et al. (2008). Ubiquitin E3 ligase Ring1b/Rnf2 of polycomb repressive complex 1 contributes to stable maintenance of mouse embryonic stem cells. PLoS One 3: e2235.

    Article  Google Scholar 

  • Voncken JW, Roelen BA, Roefs M, de Vries S, Verhoeven E, Marino S et al. (2003). Rnf2 (Ring1b) deficiency causes gastrulation arrest and cell cycle inhibition. Proc Natl Acad Sci USA 100: 2468–2473.

    Article  CAS  Google Scholar 

  • Wang H, Wang L, Erdjument-Bromage H, Vidal M, Tempst P, Jones RS et al. (2004). Role of histone H2A ubiquitination in Polycomb silencing. Nature 431: 873–878.

    Article  CAS  Google Scholar 

  • Wei J, Zhai L, Xu J, Wang H . (2006). Role of Bmi1 in H2A ubiquitylation and Hox gene silencing. J Biol Chem 281: 22537–22544.

    Article  CAS  Google Scholar 

  • Zaaroor-Regev D, de Bie P, Scheffner M, Noy T, Shemer R, Heled M et al. (2010). Regulation of the polycomb protein Ring1B by self-ubiquitination or by E6-AP may have implications to the pathogenesis of Angelman syndrome. Proc Natl Acad Sci USA 107: 6788–6793.

    Article  CAS  Google Scholar 

  • Zeller KI, Zhao X, Lee CW, Chiu KP, Yao F, Yustein JT et al. (2006). Global mapping of c-Myc binding sites and target gene networks in human B cells. Proc Natl Acad Sci USA 103: 17834–17839.

    Article  CAS  Google Scholar 

  • Zhao J, Tenev T, Martins LM, Downward J, Lemoine NR . (2000). The ubiquitin-proteasome pathway regulates survivin degradation in a cell cycle-dependent manner. J Cell Sci 113 (Pt 23): 4363–4371.

    CAS  Google Scholar 

  • Zhou BP, Liao Y, Xia W, Zou Y, Spohn B, Hung MC . (2001). HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat Cell Biol 3: 973–982.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Korea Research Foundation Grant (KRF-2007-314-E00041) funded by the Korean Government (MOEHRD, Basic Research Promotion Fund) and a Korea Science and Engineering Foundation grant funded by the Korean government (MEST) (No. 20090081874).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Kong.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, T., Lee, JY., Park, JH. et al. Id1 enhances RING1b E3 ubiquitin ligase activity through the Mel-18/Bmi-1 polycomb group complex. Oncogene 29, 5818–5827 (2010). https://doi.org/10.1038/onc.2010.317

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.317

Keywords

This article is cited by

Search

Quick links