Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

TGFβ signaling in head and neck squamous cell carcinoma

Abstract

Transforming growth factor beta (TGFβ) is a key regulator of epithelial cell proliferation, immune function and angiogenesis. Because TGFβ signaling maintains epithelial homeostasis, dysregulated TGFβ signaling is common in many malignancies, including head and neck squamous cell carcinoma (HNSCC). Defective TGFβ signaling in epithelial cells causes hyperproliferation, reduced apoptosis and increased genomic instability, and the compensatory increase in TGFβ production by tumor epithelial cells with TGFβ signaling defects further promotes tumor growth and metastases by increasing angiogenesis and inflammation in tumor stromal cells. Here, we review the mouse models that we used to study TGFβ signaling in HNSCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Argiris A, Karamouzis MV, Raben D, Ferris RL . (2008). Head and neck cancer. Lancet 371: 1695–1709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balmain A, Pragnell IB . (1983). Mouse skin carcinomas induced in vivo by chemical carcinogens have a transforming Harvey-ras oncogene. Nature 303: 72–74.

    Article  CAS  PubMed  Google Scholar 

  • Bardeesy N, Cheng KH, Berger JH, Chu GC, Pahler J, Olson P et al. (2006). Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer. Genes Dev 20: 3130–3146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertolino P, Deckers M, Lebrin F, ten Dijke P . (2005). Transforming growth factor-beta signal transduction in angiogenesis and vascular disorders. Chest 128: 585S–590S.

    Article  CAS  PubMed  Google Scholar 

  • Berton TR, Matsumoto T, Page A, Conti CJ, Deng CX, Jorcano JL et al. (2003). Tumor formation in mice with conditional inactivation of Brca1 in epithelial tissues. Oncogene 22: 5415–5426.

    Article  CAS  PubMed  Google Scholar 

  • Bharathy S, Xie W, Yingling JM, Reiss M . (2008). Cancer-associated transforming growth factor beta type II receptor gene mutant causes activation of bone morphogenic protein-Smads and invasive phenotype. Cancer Res 68: 1656–1666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bian Y, Terse A, Du J, Hall B, Molinolo A, Zhang P et al. (2009). Progressive tumor formation in mice with conditional deletion of TGF-beta signaling in head and neck epithelia is associated with activation of the PI3K/Akt pathway. Cancer Res 69: 5918–5926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bierie B, Moses HL . (2006a). TGF-beta and cancer. Cytokine Growth Factor Rev 17: 29–40.

    Article  CAS  PubMed  Google Scholar 

  • Bierie B, Moses HL . (2006b). Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 6: 506–520.

    Article  CAS  PubMed  Google Scholar 

  • Bornstein S, White R, Malkoski S, Oka M, Han G, Cleaver T et al. (2009). Smad4 loss in mice causes spontaneous head and neck cancer with increased genomic instability and inflammation. J Clin Invest 119: 3408–3419.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boucek J, Mrkvan T, Chovanec M, Kuchar M, Betka J, Boucek V et al. (2009). Regulatory T cells and their prognostic value for patients with squamous cell carcinoma of the head and neck. J Cell Mol Med 14: 426–433.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Byrne C, Tainsky M, Fuchs E . (1994). Programming gene expression in developing epidermis. Development 120: 2369–2383.

    Article  CAS  PubMed  Google Scholar 

  • Chang SE, Bhatia P, Johnson NW, Morgan PR, McCormick F, Young B et al. (1991). Ras mutations in United Kingdom examples of oral malignancies are infrequent. Int J Cancer 48: 409–412.

    Article  CAS  PubMed  Google Scholar 

  • Chen CR, Kang Y, Siegel PM, Massague J . (2002). E2F4/5 and p107 as Smad cofactors linking the TGFbeta receptor to c-myc repression. Cell 110: 19–32.

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Yan W, Wells RG, Rimm DL, McNiff J, Leffell D et al. (2001). Novel inactivating mutations of transforming growth factor-beta type I receptor gene in head-and-neck cancer metastases. Int J Cancer 93: 653–661.

    Article  CAS  PubMed  Google Scholar 

  • Cohen J, Chen Z, Lu SL, Yang XP, Arun P, Ehsanian R et al. (2009). Attenuated transforming growth factor beta signaling promotes nuclear factor-kappaB activation in head and neck cancer. Cancer Res 69: 3415–3424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui W, Fowlis DJ, Bryson S, Duffie E, Ireland H, Balmain A et al. (1996). TGFbeta1 inhibits the formation of benign skin tumors, but enhances progression to invasive spindle carcinomas in transgenic mice. Cell 86: 531–542.

    Article  CAS  PubMed  Google Scholar 

  • Curado MP, Hashibe M . (2009). Recent changes in the epidemiology of head and neck cancer. Curr Opin Oncol 21: 194–200.

    Article  PubMed  Google Scholar 

  • Ebisawa T, Fukuchi M, Murakami G, Chiba T, Tanaka K, Imamura T et al. (2001). Smurf1 interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation. J Biol Chem 276: 12477–12480.

    Article  CAS  PubMed  Google Scholar 

  • Edwards BK, Ward E, Kohler BA, Eheman C, Zauber AG, Anderson RN et al. (2010). Annual report to the nation on the status of cancer, 1975–2006, featuring colorectal cancer trends and impact of interventions (risk factors, screening, and treatment) to reduce future rates. Cancer 116: 544–573.

    Article  PubMed  Google Scholar 

  • Forastiere A, Koch W, Trotti A, Sidransky D . (2001). Head and neck cancer. N Engl J Med 345: 1890–1900.

    Article  CAS  PubMed  Google Scholar 

  • Fukai Y, Fukuchi M, Masuda N, Osawa H, Kato H, Nakajima T et al. (2003). Reduced expression of transforming growth factor-beta receptors is an unfavorable prognostic factor in human esophageal squamous cell carcinoma. Int J Cancer 104: 161–166.

    Article  CAS  PubMed  Google Scholar 

  • Garrigue-Antar L, Munoz-Antonia T, Antonia SJ, Gesmonde J, Vellucci VF, Reiss M . (1995). Missense mutations of the transforming growth factor beta type II receptor in human head and neck squamous carcinoma cells. Cancer Res 55: 3982–3987.

    CAS  PubMed  Google Scholar 

  • Gomis RR, Alarcon C, Nadal C, Van Poznak C, Massague J . (2006). C/EBPbeta at the core of the TGFbeta cytostatic response and its evasion in metastatic breast cancer cells. Cancer Cell 10: 203–214.

    Article  CAS  PubMed  Google Scholar 

  • Grandis JR, Drenning SD, Zeng Q, Watkins SC, Melhem MF, Endo S et al. (2000). Constitutive activation of Stat3 signaling abrogates apoptosis in squamous cell carcinogenesis in vivo. Proc Natl Acad Sci USA 97: 4227–4232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grandis JR, Tweardy DJ . (1993). Elevated levels of transforming growth factor alpha and epidermal growth factor receptor messenger RNA are early markers of carcinogenesis in head and neck cancer. Cancer Res 53: 3579–3584.

    CAS  PubMed  Google Scholar 

  • Guasch G, Schober M, Pasolli HA, Conn EB, Polak L, Fuchs E . (2007). Loss of TGFbeta signaling destabilizes homeostasis and promotes squamous cell carcinomas in stratified epithelia. Cancer Cell 12: 313–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn SA, Schutte M, Hoque AT, Moskaluk CA, da Costa LT, Rozenblum E et al. (1996). DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 271: 350–353.

    Article  CAS  PubMed  Google Scholar 

  • Hawkins BL, Heniford BW, Ackermann DM, Leonberger M, Martinez SA, Hendler FJ . (1994). 4NQO carcinogenesis: a mouse model of oral cavity squamous cell carcinoma. Head Neck 16: 424–432.

    Article  CAS  PubMed  Google Scholar 

  • Hecht SS . (2003). Tobacco carcinogens, their biomarkers and tobacco-induced cancer. Nat Rev Cancer 3: 733–744.

    Article  CAS  PubMed  Google Scholar 

  • Honjo Y, Bian Y, Kawakami K, Molinolo A, Longenecker G, Boppana R et al. (2007). TGF-beta receptor I conditional knockout mice develop spontaneous squamous cell carcinoma. Cell Cycle 6: 1360–1366.

    Article  CAS  PubMed  Google Scholar 

  • Hoot KE, Lighthall J, Han G, Lu SL, Li A, Ju W et al. (2008). Keratinocyte-specific Smad2 ablation results in increased epithelial-mesenchymal transition during skin cancer formation and progression. J Clin Invest 118: 2722–2732.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter KD, Parkinson EK, Harrison PR . (2005). Profiling early head and neck cancer. Nat Rev Cancer 5: 127–135.

    Article  CAS  PubMed  Google Scholar 

  • Iamaroon A, Pattamapun K, Piboonniyom SO . (2006). Aberrant expression of Smad4, a TGF-beta signaling molecule, in oral squamous cell carcinoma. J Oral Sci 48: 105–109.

    Article  CAS  PubMed  Google Scholar 

  • Izeradjene K, Combs C, Best M, Gopinathan A, Wagner A, Grady WM et al. (2007). Kras(G12D) and Smad4/Dpc4 haploinsufficiency cooperate to induce mucinous cystic neoplasms and invasive adenocarcinoma of the pancreas. Cancer Cell 11: 229–243.

    Article  CAS  PubMed  Google Scholar 

  • Jackson EL, Willis N, Mercer K, Bronson RT, Crowley D, Montoya R et al. (2001). Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev 15: 3243–3248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jonkers J, Berns A . (2002). Conditional mouse models of sporadic cancer. Nat Rev Cancer 2: 251–265.

    Article  CAS  PubMed  Google Scholar 

  • Junttila MR, Puustinen P, Niemela M, Ahola R, Arnold H, Bottzauw T et al. (2007). CIP2A inhibits PP2A in human malignancies. Cell 130: 51–62.

    Article  CAS  PubMed  Google Scholar 

  • Kang SH, Bang YJ, Im YH, Yang HK, Lee DA, Lee HY et al. (1999). Transcriptional repression of the transforming growth factor-beta type I receptor gene by DNA methylation results in the development of TGF-beta resistance in human gastric cancer. Oncogene 18: 7280–7286.

    Article  CAS  PubMed  Google Scholar 

  • Kang Y, Chen CR, Massague J . (2003). A self-enabling TGFbeta response coupled to stress signaling: Smad engages stress response factor ATF3 for Id1 repression in epithelial cells. Mol Cell 11: 915–926.

    Article  CAS  PubMed  Google Scholar 

  • Karamouzis MV, Grandis JR, Argiris A . (2007). Therapies directed against epidermal growth factor receptor in aerodigestive carcinomas. JAMA 298: 70–82.

    Article  CAS  PubMed  Google Scholar 

  • Kim BG, Li C, Qiao W, Mamura M, Kasprzak B, Anver M et al. (2006). Smad4 signalling in T cells is required for suppression of gastrointestinal cancer. Nature 441: 1015–1019.

    Article  CAS  PubMed  Google Scholar 

  • Kim SK, Fan Y, Papadimitrakopoulou V, Clayman G, Hittelman WN, Hong WK et al. (1996). DPC4, a candidate tumor suppressor gene, is altered infrequently in head and neck squamous cell carcinoma. Cancer Res 56: 2519–2521.

    CAS  PubMed  Google Scholar 

  • Kitamura T, Kometani K, Hashida H, Matsunaga A, Miyoshi H, Hosogi H et al. (2007). SMAD4-deficient intestinal tumors recruit CCR1+ myeloid cells that promote invasion. Nat Genet 39: 467–475.

    Article  CAS  PubMed  Google Scholar 

  • Kutler DI, Auerbach AD, Satagopan J, Giampietro PF, Batish SD, Huvos AG et al. (2003). High incidence of head and neck squamous cell carcinoma in patients with Fanconi anemia. Arch Otolaryngol Head Neck Surg 129: 106–112.

    Article  PubMed  Google Scholar 

  • Levy L, Hill CS . (2006). Alterations in components of the TGF-beta superfamily signaling pathways in human cancer. Cytokine Growth Factor Rev 17: 41–58.

    Article  CAS  PubMed  Google Scholar 

  • Lewandoski M . (2001). Conditional control of gene expression in the mouse. Nat Rev Genet 2: 743–755.

    Article  CAS  PubMed  Google Scholar 

  • Li AG, Lu SL, Zhang MX, Deng C, Wang XJ . (2004). Smad3 knockout mice exhibit a resistance to skin chemical carcinogenesis. Cancer Res 64: 7836–7845.

    Article  CAS  PubMed  Google Scholar 

  • Li W, Qiao W, Chen L, Xu X, Yang X, Li D et al. (2003). Squamous cell carcinoma and mammary abscess formation through squamous metaplasia in Smad4/Dpc4 conditional knockout mice. Development 130: 6143–6153.

    Article  CAS  PubMed  Google Scholar 

  • Licitra L, Perrone F, Bossi P, Suardi S, Mariani L, Artusi R et al. (2006). High-risk human papillomavirus affects prognosis in patients with surgically treated oropharyngeal squamous cell carcinoma. J Clin Oncol 24: 5630–5636.

    Article  CAS  PubMed  Google Scholar 

  • Liu IM, Schilling SH, Knouse KA, Choy L, Derynck R, Wang XF . (2009). TGFbeta-stimulated Smad1/5 phosphorylation requires the ALK5 L45 loop and mediates the pro-migratory TGFbeta switch. EMBO J 28: 88–98.

    Article  CAS  PubMed  Google Scholar 

  • Lu SL, Herrington H, Reh D, Weber S, Bornstein S, Wang D et al. (2006). Loss of transforming growth factor-beta type II receptor promotes metastatic head-and-neck squamous cell carcinoma. Genes Dev 20: 1331–1342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu SL, Reh D, Li AG, Woods J, Corless CL, Kulesz-Martin M et al. (2004). Overexpression of transforming growth factor beta1 in head and neck epithelia results in inflammation, angiogenesis, and epithelial hyperproliferation. Cancer Res 64: 4405–4410.

    Article  CAS  PubMed  Google Scholar 

  • Mangan PR, Harrington LE, O′Quinn DB, Helms WS, Bullard DC, Elson CO et al. (2006). Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 441: 231–234.

    Article  CAS  PubMed  Google Scholar 

  • Mao L, Hong WK, Papadimitrakopoulou VA . (2004). Focus on head and neck cancer. Cancer Cell 5: 311–316.

    Article  CAS  PubMed  Google Scholar 

  • Marsit CJ, Liu M, Nelson HH, Posner M, Suzuki M, Kelsey KT . (2004). Inactivation of the Fanconi anemia/BRCA pathway in lung and oral cancers: implications for treatment and survival. Oncogene 23: 1000–1004.

    Article  CAS  PubMed  Google Scholar 

  • Massague J . (2000). How cells read TGF-beta signals. Nat Rev Mol Cell Biol 1: 169–178.

    Article  CAS  PubMed  Google Scholar 

  • Massague J . (2008). TGFbeta in Cancer. Cell 134: 215–230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Massague J, Seoane J, Wotton D . (2005). Smad transcription factors. Genes Dev 19: 2783–2810.

    Article  CAS  PubMed  Google Scholar 

  • McCaul JA, Gordon KE, Clark LJ, Parkinson EK . (2002). Telomerase inhibition and the future management of head-and-neck cancer. Lancet Oncol 3: 280–288.

    Article  CAS  PubMed  Google Scholar 

  • Moutsopoulos NM, Wen J, Wahl SM . (2008). TGF-beta and tumors—an ill-fated alliance. Curr Opin Immunol 20: 234–240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muro-Cacho CA, Anderson M, Cordero J, Munoz-Antonia T . (1999). Expression of transforming growth factor beta type II receptors in head and neck squamous cell carcinoma. Clin Cancer Res 5: 1243–1248.

    CAS  PubMed  Google Scholar 

  • Muro-Cacho CA, Rosario-Ortiz K, Livingston S, Munoz-Antonia T . (2001). Defective transforming growth factor beta signaling pathway in head and neck squamous cell carcinoma as evidenced by the lack of expression of activated Smad2. Clin Cancer Res 7: 1618–1626.

    CAS  PubMed  Google Scholar 

  • Owens P, Engelking E, Han G, Haeger SM, Wang XJ . (2010). Epidermal Smad4 deletion results in aberrant wound healing. Am J Pathol 176: 122–133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papadimitrakopoulou VA, Oh Y, El-Naggar A, Izzo J, Clayman G, Mao L . (1998). Presence of multiple incontiguous deleted regions at the long arm of chromosome 18 in head and neck cancer. Clin Cancer Res 4: 539–544.

    CAS  PubMed  Google Scholar 

  • Pardali K, Kowanetz M, Heldin CH, Moustakas A . (2005). Smad pathway-specific transcriptional regulation of the cell cycle inhibitor p21(WAF1/Cip1). J Cell Physiol 204: 260–272.

    Article  CAS  PubMed  Google Scholar 

  • Pardali K, Moustakas A . (2007). Actions of TGF-beta as tumor suppressor and pro-metastatic factor in human cancer. Biochim Biophys Acta 1775: 21–62.

    CAS  PubMed  Google Scholar 

  • Parkin DM, Bray F, Ferlay J, Pisani P . (2005). Global cancer statistics, 2002. CA Cancer J Clin 55: 74–108.

    Article  PubMed  Google Scholar 

  • Pearlstein RP, Benninger MS, Carey TE, Zarbo RJ, Torres FX, Rybicki BA et al. (1998). Loss of 18q predicts poor survival of patients with squamous cell carcinoma of the head and neck. Genes Chromosomes Cancer 21: 333–339.

    Article  CAS  PubMed  Google Scholar 

  • Prime SS, Thakker NS, Pring M, Guest PG, Paterson IC . (2001). A review of inherited cancer syndromes and their relevance to oral squamous cell carcinoma. Oral Oncol 37: 1–16.

    Article  CAS  PubMed  Google Scholar 

  • Qiao W, Li AG, Owens P, Xu X, Wang XJ, Deng CX . (2006). Hair follicle defects and squamous cell carcinoma formation in Smad4 conditional knockout mouse skin. Oncogene 25: 207–217.

    Article  CAS  PubMed  Google Scholar 

  • Saranath D, Chang SE, Bhoite LT, Panchal RG, Kerr IB, Mehta AR et al. (1991). High frequency mutation in codons 12 and 61 of H-ras oncogene in chewing tobacco-related human oral carcinoma in India. Br J Cancer 63: 573–578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seoane J, Le HV, Shen L, Anderson SA, Massague J . (2004). Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 117: 211–223.

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Massague J . (2003). Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113: 685–700.

    Article  CAS  PubMed  Google Scholar 

  • Shin DM, Ro JY, Hong WK, Hittelman WN . (1994). Dysregulation of epidermal growth factor receptor expression in premalignant lesions during head and neck tumorigenesis. Cancer Res 54: 3153–3159.

    CAS  PubMed  Google Scholar 

  • Sirard C, de la Pompa JL, Elia A, Itie A, Mirtsos C, Cheung A et al. (1998). The tumor suppressor gene Smad4/Dpc4 is required for gastrulation and later for anterior development of the mouse embryo. Genes Dev 12: 107–119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD et al. (2006). The consensus coding sequences of human breast and colorectal cancers. Science 314: 268–274.

    Article  PubMed  CAS  Google Scholar 

  • Snijders AM, Schmidt BL, Fridlyand J, Dekker N, Pinkel D, Jordan RC et al. (2005). Rare amplicons implicate frequent deregulation of cell fate specification pathways in oral squamous cell carcinoma. Oncogene 24: 4232–4242.

    Article  CAS  PubMed  Google Scholar 

  • Song JI, Grandis JR . (2000). STAT signaling in head and neck cancer. Oncogene 19: 2489–2495.

    Article  CAS  PubMed  Google Scholar 

  • Sorrentino A, Thakur N, Grimsby S, Marcusson A, von Bulow V, Schuster N et al. (2008). The type I TGF-beta receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nat Cell Biol 10: 1199–1207.

    Article  CAS  PubMed  Google Scholar 

  • Sparano A, Quesnelle KM, Kumar MS, Wang Y, Sylvester AJ, Feldman M et al. (2006). Genome-wide profiling of oral squamous cell carcinoma by array-based comparative genomic hybridization. Laryngoscope 116: 735–741.

    Article  CAS  PubMed  Google Scholar 

  • Takaku K, Oshima M, Miyoshi H, Matsui M, Seldin MF, Taketo MM . (1998). Intestinal tumorigenesis in compound mutant mice of both Dpc4 (Smad4) and Apc genes. Cell 92: 645–656.

    Article  CAS  PubMed  Google Scholar 

  • Takebayashi S, Ogawa T, Jung KY, Muallem A, Mineta H, Fisher SG et al. (2000). Identification of new minimally lost regions on 18q in head and neck squamous cell carcinoma. Cancer Res 60: 3397–3403.

    CAS  PubMed  Google Scholar 

  • Tannehill-Gregg SH, Kusewitt DF, Rosol TJ, Weinstein M . (2004). The roles of Smad2 and Smad3 in the development of chemically induced skin tumors in mice. Vet Pathol 41: 278–282.

    Article  CAS  PubMed  Google Scholar 

  • Teicher BA . (2007). Transforming growth factor-beta and the immune response to malignant disease. Clin Cancer Res 13: 6247–6251.

    Article  CAS  PubMed  Google Scholar 

  • Ten Dijke P, Goumans MJ, Itoh F, Itoh S . (2002). Regulation of cell proliferation by Smad proteins. J Cell Physiol 191: 1–16.

    Article  CAS  PubMed  Google Scholar 

  • Teng Y, Sun AN, Pan XC, Yang G, Yang LL, Wang MR et al. (2006). Synergistic function of Smad4 and PTEN in suppressing forestomach squamous cell carcinoma in the mouse. Cancer Res 66: 6972–6981.

    Article  CAS  PubMed  Google Scholar 

  • van Oijen MG, Rijksen G, ten Broek FW, Slootweg PJ . (1998). Increased expression of epidermal growth factor receptor in normal epithelium adjacent to head and neck carcinomas independent of tobacco and alcohol abuse. Oral Dis 4: 4–8.

    Article  CAS  PubMed  Google Scholar 

  • van Vlasselaer P, Punnonen J, de Vries JE . (1992). Transforming growth factor-beta directs IgA switching in human B cells. J Immunol 148: 2062–2067.

    CAS  PubMed  Google Scholar 

  • Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B . (2006). TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24: 179–189.

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Song H, Evans JA, Lang JC, Schuller DE, Weghorst CM . (1997a). Mutation and downregulation of the transforming growth factor beta type II receptor gene in primary squamous cell carcinomas of the head and neck. Carcinogenesis 18: 2285–2290.

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Yang L, Yang J, Kuropatwinski K, Wang W, Liu XQ et al. (2008). Transforming growth factor beta induces apoptosis through repressing the phosphoinositide 3-kinase/AKT/survivin pathway in colon cancer cells. Cancer Res 68: 3152–3160.

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Zinkel S, Polonsky K, Fuchs E . (1997b). Transgenic studies with a keratin promoter-driven growth hormone transgene: prospects for gene therapy. Proc Natl Acad Sci USA 94: 219–226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber F, Xu Y, Zhang L, Patocs A, Shen L, Platzer P et al. (2007). Microenvironmental genomic alterations and clinicopathological behavior in head and neck squamous cell carcinoma. JAMA 297: 187–195.

    Article  CAS  PubMed  Google Scholar 

  • Weeks BH, He W, Olson KL, Wang XJ . (2001). Inducible expression of transforming growth factor beta1 in papillomas causes rapid metastasis. Cancer Res 61: 7435–7443.

    CAS  PubMed  Google Scholar 

  • Worsham MJ, Chen KM, Meduri V, Nygren AO, Errami A, Schouten JP et al. (2006). Epigenetic events of disease progression in head and neck squamous cell carcinoma. Arch Otolaryngol Head Neck Surg 132: 668–677.

    Article  PubMed  Google Scholar 

  • Wreesmann VB, Estilo C, Eisele DW, Singh B, Wang SJ . (2007). Downregulation of Fanconi anemia genes in sporadic head and neck squamous cell carcinoma. ORL J Otorhinolaryngol Relat Spec 69: 218–225.

    Article  CAS  PubMed  Google Scholar 

  • Wrzesinski SH, Wan YY, Flavell RA . (2007). Transforming growth factor-beta and the immune response: implications for anticancer therapy. Clin Cancer Res 13: 5262–5270.

    Article  CAS  PubMed  Google Scholar 

  • Xie W, Bharathy S, Kim D, Haffty BG, Rimm DL, Reiss M . (2003). Frequent alterations of Smad signaling in human head and neck squamous cell carcinomas: a tissue microarray analysis. Oncol Res 14: 61–73.

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Brodie SG, Yang X, Im YH, Parks WT, Chen L et al. (2000). Haploid loss of the tumor suppressor Smad4/Dpc4 initiates gastric polyposis and cancer in mice. Oncogene 19: 1868–1874.

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Kobayashi S, Qiao W, Li C, Xiao C, Radaeva S et al. (2006). Induction of intrahepatic cholangiocellular carcinoma by liver-specific disruption of Smad4 and Pten in mice. J Clin Invest 116: 1843–1852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamashita M, Fatyol K, Jin C, Wang X, Liu Z, Zhang YE . (2008). TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-beta. Mol Cell 31: 918–924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanagisawa K, Osada H, Masuda A, Kondo M, Saito T, Yatabe Y et al. (1998). Induction of apoptosis by Smad3 and down-regulation of Smad3 expression in response to TGF-beta in human normal lung epithelial cells. Oncogene 17: 1743–1747.

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Mao C, Teng Y, Li W, Zhang J, Cheng X et al. (2005). Targeted disruption of Smad4 in mouse epidermis results in failure of hair follicle cycling and formation of skin tumors. Cancer Res 65: 8671–8678.

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Li C, Xu X, Deng C . (1998). The tumor suppressor SMAD4/DPC4 is essential for epiblast proliferation and mesoderm induction in mice. Proc Natl Acad Sci USA 95: 3667–3672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan B, Heniford BW, Ackermann DM, Hawkins BL, Hendler FJ . (1994). Harvey ras (H-ras) point mutations are induced by 4-nitroquinoline-1-oxide in murine oral squamous epithelia, while squamous cell carcinomas and loss of heterozygosity occur without additional exposure. Cancer Res 54: 5310–5317.

    CAS  PubMed  Google Scholar 

  • Zavadil J, Bottinger EP . (2005). TGF-beta and epithelial-to-mesenchymal transitions. Oncogene 24: 5764–5774.

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Ekman M, Thakur N, Bu S, Davoodpour P, Grimsby S et al. (2006). TGFbeta1-induced activation of ATM and p53 mediates apoptosis in a Smad7-dependent manner. Cell Cycle 5: 2787–2795.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Feng X, We R, Derynck R . (1996). Receptor-associated Mad homologues synergize as effectors of the TGF-beta response. Nature 383: 168–172.

    Article  CAS  PubMed  Google Scholar 

  • Zhang YE . (2009). Non-Smad pathways in TGF-beta signaling. Cell Res 19: 128–139.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank our laboratory members for their contributions and Pamela Garl for proofreading. Work from the Wang laboratory was supported by NIH grants CA87849, CA79998, DE15953 and CA131483.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X-J Wang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, R., Malkoski, S. & Wang, XJ. TGFβ signaling in head and neck squamous cell carcinoma. Oncogene 29, 5437–5446 (2010). https://doi.org/10.1038/onc.2010.306

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.306

Keywords

This article is cited by

Search

Quick links