Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

p53 isoforms gain functions

Abstract

Many different cell stress pathways converge on p53 to induce a number of distinct cell biological responses such as G1 or G2 arrest, senescence or apoptosis. One of the outstanding questions with regard to p53 is how the cells can differentiate between different stresses so that p53 activation leads to the correct response. It has been known for some time that the p53 gene expresses isoforms that carry unique domains and properties, and more recent works have started to reveal some of their functions. The alternative mRNA translation product p53/47, which lacks the first 40 codons, including the first of p53's two trans-activation domains, is being linked to endoplasmic reticulum stress and the unfolded protein response to which it causes a specific G2 arrest. On the other hand, p53 itself induces G1 arrest and has no effect on the G2. The two isoforms Δ133p53, which lacks the first 133 amino acids, and p53β, which carries an alternative C-terminus, are derived from alternative promoter usage or splicing, respectively, and are together implied in controlling cellular senescence. Hence, through different mechanisms of gene expression control, alternative levels of p53 isoforms help the cell to differentiate between p53 activation and the response to diverse stresses. This holds promise to a better understanding of how upstream and downstream p53 pathways have evolved relative to specific p53 domains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Adams PD . (2009). Healing and hurting: molecular mechanisms, functions, and pathologies of cellular senescence. Mol Cell 36: 2–14.

    Article  CAS  PubMed  Google Scholar 

  • Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N et al. (2006). Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444: 633–637.

    Article  CAS  PubMed  Google Scholar 

  • Bourdon JC, Fernandes K, Murray-Zmijewski F, Liu G, Diot A, Xirodimas DP et al. (2005). p53 isoforms can regulate p53 transcriptional activity. Genes Dev 19: 2122–2137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourougaa K, Naski N, Boularan C, Mlynarczyk C, Candeias MM, Marullo S et al. (2010). Endoplasmic reticulum stress induces G2 cell cycle arrest via mRNA translation of the p53 isoform p53/47. Mol Cell, 2010 38: 78–88.

    Article  CAS  PubMed  Google Scholar 

  • Braig M, Lee S, Loddenkemper C, Rudolph C, Peters AH, Schlegelberger B et al. (2005). Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436: 660–665.

    Article  CAS  PubMed  Google Scholar 

  • Candeias MM, Malbert-Colas L, Powell DJ, Daskalogianni C, Maslon MM, Naski N et al. (2008). p53 mRNA controls p53 activity by managing Mdm2 functions. Nat Cell Biol 10: 1098–1105.

    Article  CAS  PubMed  Google Scholar 

  • Candeias MM, Powell DJ, Roubalova E, Apcher S, Bourougaa K, Vojtesek B et al. (2006). Expression of p53 and p53/47 are controlled by alternative mechanisms of messenger RNA translation initiation. Oncogene 25: 6936–6947.

    Article  CAS  PubMed  Google Scholar 

  • Chan TA, Hermeking H, Lengauer C, Kinzler KW, Vogelstein B . (1999). 14-3-3Sigma is required to prevent mitotic catastrophe after DNA damage. Nature 401: 616–620.

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Shen J, Prywes R . (2002). The luminal domain of ATF6 senses endoplasmic reticulum (ER) stress and causes translocation of ATF6 from the ER to the Golgi. J Biol Chem 277: 13045–13052.

    Article  CAS  PubMed  Google Scholar 

  • Collado M, Gil J, Efeyan A, Guerra C, Schuhmacher AJ, Barradas M et al. (2005). Tumour biology: senescence in premalignant tumours. Nature 436: 642.

    Article  CAS  PubMed  Google Scholar 

  • Collado M, Serrano M . (2010). Senescence in tumours: evidence from mice and humans. Nat Rev Cancer 10: 51–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornelis S, Bruynooghe Y, Denecker G, Van Huffel S, Tinton S, Beyaert R . (2000). Identification and characterization of a novel cell cycle-regulated internal ribosome entry site. Mol Cell 5: 597–605.

    Article  CAS  PubMed  Google Scholar 

  • Courtois S, Verhaegh G, North S, Luciani MG, Lassus P, Hibner U et al. (2002). DeltaN-p53, a natural isoform of p53 lacking the first transactivation domain, counteracts growth suppression by wild-type p53. Oncogene 21: 6722–6728.

    Article  CAS  PubMed  Google Scholar 

  • d'Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T et al. (2003). A DNA damage checkpoint response in telomere-initiated senescence. Nature 426: 194–198.

    Article  CAS  PubMed  Google Scholar 

  • Dankort D, Filenova E, Collado M, Serrano M, Jones K, McMahon M . (2007). A new mouse model to explore the initiation, progression, and therapy of BRAFV600E-induced lung tumors. Genes Dev 21: 379–384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Efeyan A, Ortega-Molina A, Velasco-Miguel S, Herranz D, Vassilev LT, Serrano M . (2007). Induction of p53-dependent senescence by the MDM2 antagonist nutlin-3a in mouse cells of fibroblast origin. Cancer Res 67: 7350–7357.

    Article  CAS  PubMed  Google Scholar 

  • el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM et al. (1993). WAF1, a potential mediator of p53 tumor suppression. Cell 75: 817–825.

    Article  CAS  PubMed  Google Scholar 

  • Feldser DM, Greider CW . (2007). Short telomeres limit tumor progression in vivo by inducing senescence. Cancer Cell 11: 461–469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez J, Bode B, Koromilas A, Diehl JA, Krukovets I, Snider MD et al. (2002). Translation mediated by the internal ribosome entry site of the cat-1 mRNA is regulated by glucose availability in a PERK kinase-dependent manner. J Biol Chem 277: 11780–11787.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez PM, Tabbara SO, Jacobs LK, Manning FC, Tsangaris TN, Schwartz AM et al. (2000). Overexpression of the glucose-regulated stress gene GRP78 in malignant but not benign human breast lesions. Breast Cancer Res Treat 59: 15–26.

    Article  CAS  PubMed  Google Scholar 

  • Fujita K, Mondal AM, Horikawa I, Nguyen GH, Kumamoto K . (2009). p53 isoforms D133p53 and p53b are endogenous regulators of replicative cellular senescence. Nat Cell Biol 11: 1135–1142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh A, Stewart D, Matlashewski G . (2004). Regulation of human p53 activity and cell localization by alternative splicing. Mol Cell Biol 24: 7987–7997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grover R, Candeias MM, Fahraeus R, Das S . (2009). p53 and little brother p53/47: linking IRES activities with protein functions. Oncogene 28: 2766–2772.

    Article  CAS  PubMed  Google Scholar 

  • Hansen S, Lane DP, Midgley CA . (1998). The N terminus of the murine p53 tumour suppressor is an independent regulatory domain affecting activation and thermostability. J Mol Biol 275: 575–588.

    Article  CAS  PubMed  Google Scholar 

  • Harding HP, Zhang Y, Ron D . (1999). Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397: 271–274.

    Article  CAS  PubMed  Google Scholar 

  • He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y et al. (2007). A microRNA component of the p53 tumour suppressor network. Nature 447: 1130–1134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermeking H, Benzinger A . (2006). 14-3-3 proteins in cell cycle regulation. Semin Cancer Biol 16: 183–192.

    Article  CAS  PubMed  Google Scholar 

  • Hermeking H, Lengauer C, Polyak K, He TC, Zhang L, Thiagalingam S et al. (1997). 14-3-3 sigma is a p53-regulated inhibitor of G2/M progression. Mol Cell 1: 3–11.

    Article  CAS  PubMed  Google Scholar 

  • Kim I, Xu W, Reed JC . (2008). Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov 7: 1013–1030.

    Article  CAS  PubMed  Google Scholar 

  • Koumenis C, Naczki C, Koritzinsky M, Rastani S, Diehl A, Sonenberg N et al. (2002). Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2alpha. Mol Cell Biol 22: 7405–7416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lane DP, Cheok CF, Brown CJ, Madhumalar A, Ghadessy FJ, Verma C . (2010). The Mdm2 and p53 genes are conserved in the Arachnids. Cell Cycle 9: 748–754.

    Article  CAS  PubMed  Google Scholar 

  • Ledoux S, Yang R, Friedlander G, Laouari D . (2003). Glucose depletion enhances P-glycoprotein expression in hepatoma cells: role of endoplasmic reticulum stress response. Cancer Res 63: 7284–7290.

    CAS  PubMed  Google Scholar 

  • Lee K, Tirasophon W, Shen X, Michalak M, Prywes R, Okada T et al. (2002). IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes Dev 16: 452–466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levine AJ, Oren M . (2009). The first 30 years of p53: growing ever more complex. Nat Rev Cancer 9: 749–758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandic A, Hansson J, Linder S, Shoshan MC . (2003). Cisplatin induces endoplasmic reticulum stress and nucleus-independent apoptotic signaling. J Biol Chem 278: 9100–9106.

    Article  CAS  PubMed  Google Scholar 

  • Marechal V, Elenbaas B, Piette J, Nicolas JC, Levine AJ . (1994). The ribosomal L5 protein is associated with mdm-2 and mdm-2–p53 complexes. Mol Cell Biol 14: 7414–7420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moll UM, Slade N . (2004). p63 and p73: roles in development and tumor formation. Mol Cancer Res 2: 371–386.

    CAS  PubMed  Google Scholar 

  • Peng CY, Graves PR, Thoma RS, Wu Z, Shaw AS, Piwnica-Worms H . (1997). Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science 277: 1501–1505.

    Article  CAS  PubMed  Google Scholar 

  • Pomerantz J, Schreiber-Agus N, Liegeois NJ, Silverman A, Alland L, Chin L et al. (1998). The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2's inhibition of p53. Cell 92: 713–723.

    Article  CAS  PubMed  Google Scholar 

  • Powell DJ, Hrstka R, Candeias M, Bourougaa K, Vojtesek B, Fahraeus R . (2008). Stress-dependent changes in the properties of p53 complexes by the alternative translation product p53/47. Cell Cycle 7: 950–959.

    Article  CAS  PubMed  Google Scholar 

  • Pyronnet S, Pradayrol L, Sonenberg N . (2000). A cell cycle-dependent internal ribosome entry site. Mol Cell 5: 607–616.

    Article  CAS  PubMed  Google Scholar 

  • Rajagopalan S, Jaulent AM, Wells M, Veprintsev DB, Fersht AR . (2008). 14-3-3 activation of DNA binding of p53 by enhancing its association into tetramers. Nucleic Acids Res 36: 5983–5991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray PS, Grover R, Das S . (2006). Two internal ribosome entry sites mediate the translation of p53 isoforms. EMBO Rep 7: 404–410.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ron D, Walter P . (2007). Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8: 519–529.

    Article  CAS  PubMed  Google Scholar 

  • Schroder M, Kaufman RJ . (2005). ER stress and the unfolded protein response. Mutat Res 569: 29–63.

    Article  PubMed  Google Scholar 

  • Rosenbluth M, Pietenpol A . (2008). The jury is in: p73 is a tumor suppressor after all. Genes Dev 22: 2591–2595.

    Article  CAS  PubMed  Google Scholar 

  • Shen J, Chen X, Hendershot L, Prywes R . (2002). ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev Cell 3: 99–111.

    Article  CAS  PubMed  Google Scholar 

  • Sivan G, Elroy-Stein O . (2008). Regulation of mRNA translation during cellular division. Cell Cycle 7: 741–744.

    Article  CAS  PubMed  Google Scholar 

  • Urano F, Bertolotti A, Ron D . (2000). IRE1 and efferent signaling from the endoplasmic reticulum. J Cell Sci 113 (Part 21): 3697–3702.

    CAS  PubMed  Google Scholar 

  • Vattem KM, Wek RC . (2004). Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc Natl Acad Sci USA 101: 11269–11274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogelstein B, Lane D, Levine AJ . (2000). Surfing the p53 network. Nature 408: 307–310.

    Article  CAS  PubMed  Google Scholar 

  • Vousden KH, Prives C . (2009). Blinded by the light: the growing complexity of p53. Cell 137: 413–431.

    Article  CAS  PubMed  Google Scholar 

  • Xiao ZX, Chen J, Levine AJ, Modjtahedi N, Xing J, Sellers WR et al. (1995). Interaction between the retinoblastoma protein and the oncoprotein MDM2. Nature 375: 694–698.

    Article  CAS  PubMed  Google Scholar 

  • Yin Y, Stephen CW, Luciani MG, Fahraeus R . (2002). p53 Stability and activity is regulated by Mdm2-mediated induction of alternative p53 translation products. Nat Cell Biol 4: 462–467.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K . (2001). XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107: 881–891.

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Zhou W, Jiang J, Chen X . (1998). Identification of a novel p53 functional domain that is necessary for mediating apoptosis. J Biol Chem 273: 13030–13036.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to those whose works have not been cited in this article owing to lack of space. This article is supported by the La Ligue Contre le Cancer and the French National Cancer Institute (INCa).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Fåhraeus.

Ethics declarations

Competing interests

These authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olivares-Illana, V., Fåhraeus, R. p53 isoforms gain functions. Oncogene 29, 5113–5119 (2010). https://doi.org/10.1038/onc.2010.266

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.266

Keywords

This article is cited by

Search

Quick links