Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

AZGP1 is a tumor suppressor in pancreatic cancer inducing mesenchymal-to-epithelial transdifferentiation by inhibiting TGF-β-mediated ERK signaling

Abstract

Epithelial-to-mesenchymal transdifferentiation (EMT) mediated by transforming growth factor-β (TGF-β) signaling leads to aggressive cancer progression. In this study, we identified zinc-α2-glycoprotein (AZGP1, ZAG) as a tumor suppressor in pancreatic ductal adenocarcinoma whose expression is lost due to histone deacetylation. In vitro, ZAG silencing strikingly increased invasiveness of pancreatic cancer cells accompanied by the induction of a mesenchymal phenotype. Expression analysis of a set of EMT markers showed an increase in the expression of mesenchymal markers (vimentin (VIM) and integrin-α5) and a concomitant reduction in the expression of epithelial markers (cadherin 1 (CDH1), desmoplakin and keratin-19). Blockade of endogenous TGF-β signaling inhibited these morphological changes and the downregulation of CDH1, as elicited by ZAG silencing. In a ZAG-negative cell line, human recombinant ZAG (rZAG) specifically inhibited exogenous TGF-β-mediated tumor cell invasion and VIM expression. Furthermore, rZAG blocked TGF-β-mediated ERK2 phosphorylation. PCR array analysis revealed that ZAG-induced epithelial transdifferentiation was accompanied by a series of concerted cellular events including a shift in the energy metabolism and prosurvival signals. Thus, epigenetically regulated ZAG is a novel tumor suppressor essential for maintaining an epithelial phenotype.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF et al. (2009). Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462: 108–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benfield AP, Whiddon BB, Clements JH, Martin SF . (2007). Structural and energetic aspects of Grb2-SH2 domain-swapping. Arch Biochem Biophys 462: 47–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biliran Jr H, Wang Y, Banerjee S, Xu H, Heng H, Thakur A et al. (2005). Overexpression of cyclin D1 promotes tumor cell growth and confers resistance to cisplatin-mediated apoptosis in an elastase-myc transgene-expressing pancreatic tumor cell line. Clin Cancer Res 11: 6075–6086.

    Article  CAS  PubMed  Google Scholar 

  • Bing C, Bao Y, Jenkins J, Sanders P, Manieri M, Cinti S et al. (2004). Zinc-alpha2-glycoprotein, a lipid mobilizing factor, is expressed in adipocytes and is up-regulated in mice with cancer cachexia. Proc Natl Acad Sci USA 101: 2500–2505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brabletz T, Jung A, Spaderna S, Hlubek F, Kirchner T . (2005). Opinion: migrating cancer stem cells—an integrated concept of malignant tumour progression. Nat Rev Cancer 5: 744–749.

    Article  CAS  PubMed  Google Scholar 

  • Burgi W, Schmid K . (1961). Preparation and properties of Zn-alpha 2-glycoprotein of normal human plasma. J Biol Chem 236: 1066–1074.

    CAS  PubMed  Google Scholar 

  • Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ . (2003). Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med 348: 1625–1638.

    Article  PubMed  Google Scholar 

  • Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R et al. (2008). The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452: 230–233.

    Article  CAS  PubMed  Google Scholar 

  • De Caestecker MP, Parks WT, Frank CJ, Castagnino P, Bottaro DP, Roberts AB et al. (1998). Smad2 transduces common signals from receptor serine-threonine and tyrosine kinases. Genes Dev 12: 1587–1592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dembinski JL, Krauss S . (2009). Characterization and functional analysis of a slow cycling stem cell-like subpopulation in pancreas adenocarcinoma. Clin Exp Metastasis 26: 611–623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diez-Itza I, Sanchez LM, Allende MT, Vizoso F, Ruibal A, Lopez-Otin C . (1993). Zn-alpha 2-glycoprotein levels in breast cancer cytosols and correlation with clinical, histological and biochemical parameters. Eur J Cancer 29A: 1256–1260.

    Article  CAS  PubMed  Google Scholar 

  • Dumont N, Wilson MB, Crawford YG, Reynolds PA, Sigaroudinia M, Tlsty TD . (2008). Sustained induction of epithelial to mesenchymal transition activates DNA methylation of genes silenced in basal-like breast cancers. Proc Natl Acad Sci USA 105: 14867–14872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellenrieder V, Hendler SF, Boeck W, Seufferlein T, Menke A, Ruhland C et al. (2001). Transforming growth factor beta1 treatment leads to an epithelial-mesenchymal transdifferentiation of pancreatic cancer cells requiring extracellular signal-regulated kinase 2 activation. Cancer Res 61: 4222–4228.

    CAS  PubMed  Google Scholar 

  • Esposito I, Kleeff J, Abiatari I, Shi X, Giese N, Bergmann F et al. (2007). Overexpression of cellular inhibitor of apoptosis protein 2 is an early event in the progression of pancreatic cancer. J Clin Pathol 60: 885–895.

    Article  CAS  PubMed  Google Scholar 

  • Evdokimova V, Tognon C, Ng T, Sorensen PH . (2009). Reduced proliferation and enhanced migration: two sides of the same coin? Molecular mechanisms of metastatic progression by YB-1. Cell Cycle 8: 2901–2906.

    Article  CAS  PubMed  Google Scholar 

  • Finkel E . (1996). High hopes for p21 in cancer treatment. Lancet 347: 1034.

    Article  CAS  PubMed  Google Scholar 

  • Freemantle SJ, Liu X, Feng Q, Galimberti F, Blumen S, Sekula D et al. (2007). Cyclin degradation for cancer therapy and chemoprevention. J Cell Biochem 102: 869–877.

    Article  CAS  PubMed  Google Scholar 

  • Frenette G, Dube JY, Lazure C, Paradis G, Chretien M, Tremblay RR . (1987). The major 40-kDa glycoprotein in human prostatic fluid is identical to Zn-alpha 2-glycoprotein. Prostate 11: 257–270.

    Article  CAS  PubMed  Google Scholar 

  • Friess H, Yamanaka Y, Buchler M, Ebert M, Beger HG, Gold LI et al. (1993). Enhanced expression of transforming growth factor beta isoforms in pancreatic cancer correlates with decreased survival. Gastroenterology 105: 1846–1856.

    Article  CAS  PubMed  Google Scholar 

  • Fritsche P, Seidler B, Schuler S, Schnieke A, Gottlicher M, Schmid RM et al. (2009). HDAC2 mediates therapeutic resistance of pancreatic cancer cells via the BH3-only protein NOXA. Gut 58: 1399–1409.

    Article  CAS  PubMed  Google Scholar 

  • Giehl K, Skripczynski B, Mansard A, Menke A, Gierschik P . (2000). Growth factor-dependent activation of the Ras–Raf–MEK–MAPK pathway in the human pancreatic carcinoma cell line PANC-1 carrying activated K-ras: implications for cell proliferation and cell migration. Oncogene 19: 2930–2942.

    Article  CAS  PubMed  Google Scholar 

  • Glozak MA, Seto E . (2007). Histone deacetylases and cancer. Oncogene 26: 5420–5432.

    Article  CAS  PubMed  Google Scholar 

  • Haigis KM, Kendall KR, Wang Y, Cheung A, Haigis MC, Glickman JN et al. (2008). Differential effects of oncogenic K-Ras and N-Ras on proliferation, differentiation and tumor progression in the colon. Nat Genet 40: 600–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hale LP, Price DT, Sanchez LM, Demark-Wahnefried W, Madden JF . (2001). Zinc alpha-2-glycoprotein is expressed by malignant prostatic epithelium and may serve as a potential serum marker for prostate cancer. Clin Cancer Res 7: 846–853.

    CAS  PubMed  Google Scholar 

  • Hamada S, Satoh K, Hirota M, Kimura K, Kanno A, Masamune A et al. (2007). Bone morphogenetic protein 4 induces epithelial-mesenchymal transition through MSX2 induction on pancreatic cancer cell line. J Cell Physiol 213: 768–774.

    Article  CAS  PubMed  Google Scholar 

  • Horiguchi K, Shirakihara T, Nakano A, Imamura T, Miyazono K, Saitoh M . (2009). Role of Ras signaling in the induction of snail by transforming growth factor-beta. J Biol Chem 284: 245–253.

    Article  CAS  PubMed  Google Scholar 

  • Jaenisch R, Bird A . (2003). Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33 (Suppl): 245–254.

    Article  CAS  PubMed  Google Scholar 

  • Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P et al. (2008). Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321: 1801–1806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ketterer K, Kong B, Frank D, Giese NA, Bauer A, Hoheisel J et al. (2009). Neuromedin U is overexpressed in pancreatic cancer and increases invasiveness via the hepatocyte growth factor c-Met pathway. Cancer Lett 277: 72–81.

    Article  CAS  PubMed  Google Scholar 

  • Khasawneh J, Schulz MD, Walch A, Rozman J, Hrabe de Angelis M, Klingenspor M et al. (2009). Inflammation and mitochondrial fatty acid beta-oxidation link obesity to early tumor promotion. Proc Natl Acad Sci USA 106: 3354–3359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kretzschmar M, Doody J, Timokhina I, Massague J . (1999). A mechanism of repression of TGFbeta/Smad signaling by oncogenic Ras. Genes Dev 13: 804–816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lecanda J, Ganapathy V, D'Aquino-Ardalan C, Evans B, Cadacio C, Ayala A et al. (2009). TGFbeta prevents proteasomal degradation of the cyclin-dependent kinase inhibitor p27kip1 for cell cycle arrest. Cell Cycle 8: 742–756.

    Article  CAS  PubMed  Google Scholar 

  • Lemoine NR, Jain S, Hughes CM, Staddon SL, Maillet B, Hall PA et al. (1992). Ki-ras oncogene activation in preinvasive pancreatic cancer. Gastroenterology 102: 230–236.

    Article  CAS  PubMed  Google Scholar 

  • Lim JH, Jung CR, Lee CH, Im DS . (2008). Egr-1 and serum response factor are involved in growth factors- and serum-mediated induction of E2-EPF UCP expression that regulates the VHL-HIF pathway. J Cell Biochem 105: 1117–1127.

    Article  CAS  PubMed  Google Scholar 

  • Longnecker DS, Terhune PG . (1998). What is the true rate of K-ras mutation in carcinoma of the pancreas? Pancreas 17: 323–324.

    Article  CAS  PubMed  Google Scholar 

  • Lung FD, Tsai JY . (2003). Grb2 SH2 domain-binding peptide analogs as potential anticancer agents. Biopolymers 71: 132–140.

    Article  CAS  PubMed  Google Scholar 

  • Marrades MP, Martinez JA, Moreno-Aliaga MJ . (2008). ZAG, a lipid mobilizing adipokine, is downregulated in human obesity. J Physiol Biochem 64: 61–66.

    Article  CAS  PubMed  Google Scholar 

  • Mathupala SP, Ko YH, Pedersen PL . (2006). Hexokinase II: cancer's double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene 25: 4777–4786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michalski CW, Laukert T, Sauliunaite D, Pacher P, Bergmann F, Agarwal N et al. (2007a). Cannabinoids ameliorate pain and reduce disease pathology in cerulein-induced acute pancreatitis. Gastroenterology 132: 1968–1978.

    Article  CAS  PubMed  Google Scholar 

  • Michalski CW, Maier M, Erkan M, Sauliunaite D, Bergmann F, Pacher P et al. (2008). Cannabinoids reduce markers of inflammation and fibrosis in pancreatic stellate cells. PLoS One 3: e1701.

    Article  PubMed  PubMed Central  Google Scholar 

  • Michalski CW, Shi X, Reiser C, Fachinger P, Zimmermann A, Buchler MW et al. (2007b). Neurokinin-2 receptor levels correlate with intensity, frequency, and duration of pain in chronic pancreatitis. Ann Surg 246: 786–793.

    Article  PubMed  Google Scholar 

  • Michaud DS, Giovannucci E, Willett WC, Colditz GA, Stampfer MJ, Fuchs CS . (2001). Physical activity, obesity, height, and the risk of pancreatic cancer. JAMA 286: 921–929.

    Article  CAS  PubMed  Google Scholar 

  • Ohkubo I, Niwa M, Takashima A, Nishikimi N, Gasa S, Sasaki M . (1990). Human seminal plasma Zn-alpha 2-glycoprotein: its purification and properties as compared with human plasma Zn-alpha 2-glycoprotein. Biochim Biophys Acta 1034: 152–156.

    Article  CAS  PubMed  Google Scholar 

  • Roberts AB, Wakefield LM . (2003). The two faces of transforming growth factor beta in carcinogenesis. Proc Natl Acad Sci USA 100: 8621–8623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robson EJ, Khaled WT, Abell K, Watson CJ . (2006). Epithelial-to-mesenchymal transition confers resistance to apoptosis in three murine mammary epithelial cell lines. Differentiation 74: 254–264.

    Article  CAS  PubMed  Google Scholar 

  • Rolli V, Radosavljevic M, Astier V, Macquin C, Castan-Laurell I, Visentin V et al. (2007). Lipolysis is altered in MHC class I zinc-alpha(2)-glycoprotein deficient mice. FEBS Lett 581: 394–400.

    Article  CAS  PubMed  Google Scholar 

  • Russell ST, Tisdale MJ . (2010). Antidiabetic properties of zinc-alpha2-glycoprotein in ob/ob mice. Endocrinology 151: 948–957.

    Article  CAS  PubMed  Google Scholar 

  • Russell ST, Zimmerman TP, Domin BA, Tisdale MJ . (2004). Induction of lipolysis in vitro and loss of body fat in vivo by zinc-alpha2-glycoprotein. Biochim Biophys Acta 1636: 59–68.

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Greninger P, Rhodes D, Koopman L, Violette S, Bardeesy N et al. (2009). A gene expression signature associated with ‘K-Ras addiction’ reveals regulators of EMT and tumor cell survival. Cancer Cell 15: 489–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subramanian G, Schwarz RE, Higgins L, McEnroe G, Chakravarty S, Dugar S et al. (2004). Targeting endogenous transforming growth factor beta receptor signaling in SMAD4-deficient human pancreatic carcinoma cells inhibits their invasive phenotype1. Cancer Res 64: 5200–5211.

    Article  CAS  PubMed  Google Scholar 

  • Tada T, Ohkubo I, Niwa M, Sasaki M, Tateyama H, Eimoto T . (1991). Immunohistochemical localization of Zn-alpha 2-glycoprotein in normal human tissues. J Histochem Cytochem 39: 1221–1226.

    Article  CAS  PubMed  Google Scholar 

  • Von Burstin J, Eser S, Paul MC, Seidler B, Brandl M, Messer M et al. (2009). E-cadherin regulates metastasis of pancreatic cancer in vivo and is suppressed by a SNAIL/HDAC1/HDAC2 repressor complex. Gastroenterology 137: 361–371.

    Article  CAS  PubMed  Google Scholar 

  • Wan M, Huang J, Jhala NC, Tytler EM, Yang L, Vickers SM et al. (2005). SCF(beta-TrCP1) controls Smad4 protein stability in pancreatic cancer cells. Am J Pathol 166: 1379–1392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Li Y, Kong D, Banerjee S, Ahmad A, Azmi AS et al. (2009). Acquisition of epithelial-mesenchymal transition phenotype of gemcitabine-resistant pancreatic cancer cells is linked with activation of the notch signaling pathway. Cancer Res 69: 2400–2407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Erkan M, Abiatari I, Giese NA, Felix K, Kayed H et al. (2007). Expression of extracellular matrix metalloproteinase inducer (EMMPRIN/CD147) in pancreatic neoplasm and pancreatic stellate cells. Cancer Biol Ther 6: 218–227.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Felicitas Altmayr, Tanja Rossmann-Bloeck, Manja Thorwirth and Carmen Marthen for excellent technical support. This study was in part supported by the European Union (within the framework of the ‘MolDiagPaca’ project; to JK, CWM and HF) and by the commission for clinical research of the TU Munich (KKF). BK received a fellowship from the Scholarship Council of the Ministry of Education of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Kleeff.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kong, B., Michalski, C., Hong, X. et al. AZGP1 is a tumor suppressor in pancreatic cancer inducing mesenchymal-to-epithelial transdifferentiation by inhibiting TGF-β-mediated ERK signaling. Oncogene 29, 5146–5158 (2010). https://doi.org/10.1038/onc.2010.258

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.258

Keywords

This article is cited by

Search

Quick links