Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Roles of heat shock factor 1 and 2 in response to proteasome inhibition: consequence on p53 stability

Abstract

A single heat shock factor (HSF), mediating the heat shock response, exists from yeast to Drosophila, whereas several related HSFs have been found in mammals. This raises the question of the specific or redundant functions of the different members of the HSF family and in particular of HSF1 and HSF2, which are both ubiquitously expressed. Using immortalized mouse embryonic fibroblasts (iMEFs) derived from wild-type, Hsf1−/−, Hsf2−/− or double-mutant mice, we observed the distinctive behaviors of these mutants with respect to proteasome inhibition. This proteotoxic stress reduces to the same extent the viability of Hsf1−/−- and Hsf2−/−-deficient cells, but through different underlying mechanisms. Contrary to Hsf2−/− cells, Hsf1−/− cells are unable to induce pro-survival heat shock protein expression. Conversely, proteasome activity is lower in Hsf2−/− cells and the expression of some proteasome subunits, such as Psmb5 and gankyrin, is decreased. As gankyrin is an oncoprotein involved in p53 degradation, we analyzed the status of p53 in HSF-deficient iMEFs and observed that it was strongly stabilized in Hsf2−/− cells. This study points a new role for HSF2 in the regulation of protein degradation and suggests that pan-HSF inhibitors could be valuable tools to reduce chemoresistance to proteasome inhibition observed in cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Akerfelt M, Trouillet D, Mezger V, Sistonen L . (2007). Heat shock factors at a crossroad between stress and development. Ann N Y Acad Sci 1113: 15–27.

    Article  CAS  Google Scholar 

  • Beere HM, Wolf BB, Cain K, Mosser DD, Mahboubi A, Kuwana T et al. (2000). Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol 2: 469–475.

    Article  CAS  Google Scholar 

  • Beere HM . (2005). Death versus survival: functional interaction between the apoptotic and the stress-inducible heat shock protein pathways. J Clin Invest 115: 2633–2639.

    Article  CAS  Google Scholar 

  • Bruey JM, Ducasse C, Bonniaud P, Ravagnan L, Susin SA, Diaz-Latoud C et al. (2000). Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat Cell Biol 2: 645–652.

    Article  CAS  Google Scholar 

  • Bush KT, Goldberg AL, Nigam SK . (1997). Proteasome inhibition leads to a heat-shock response, induction of endoplasmic reticulum chaperones, and thermotolerance. J Biol Chem 272: 9086–9092.

    Article  CAS  Google Scholar 

  • Busse A, Kraus M, Na IK, Rietz A, Scheibenbogen C, Driessen C et al. (2008). Sensitivity of tumor cells to proteasome inhibitors is associated with expression levels and composition of proteasome subunits. Cancer 112: 659–670.

    Article  CAS  Google Scholar 

  • Cantalupo PG, Sáenz-Robles MT, Rathi AV, Beerman RW, Patterson WH, Whitehead RH et al. (2009). Cell-type specific regulation of gene expression by simian virus 40T antigens. Virology 386: 183–191.

    Article  CAS  Google Scholar 

  • Dai C, Whitesell L, Rogers AB, Lindquist S . (2007). Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell 130: 1005–1018.

    Article  CAS  Google Scholar 

  • Dantuma NP, Lindsten K, Glas R, Jellne M, Masucci MG . (2000). Short-lived green fluorescent proteins for quantifying ubiquitin/proteasome-dependent proteolysis in living cells. Nat Biotechnol 18: 538–543.

    Article  CAS  Google Scholar 

  • Fuchs D, Berges C, Opelz G, Daniel V, Naujokat C . (2008). Increased expression and altered subunit composition of proteasomes induced by continuous proteasome inhibition establish apoptosis resistance and hyperproliferation of Burkitt lymphoma cells. J Cell Biochem 103: 270–283.

    Article  CAS  Google Scholar 

  • Hahn JS, Neef DW, Thiele DJ . (2006). A stress regulatory network for co-ordinated activation of proteasome expression mediated by yeast heat shock transcription factor. Mol Microbiol 60: 240–251.

    Article  CAS  Google Scholar 

  • Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J . (2007). qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8: R19.

    Article  Google Scholar 

  • Higashitsuji H, Itoh K, Nagao T, Dawson S, Nonoguchi K, Kido T et al. (2000). Reduced stability of retinoblastoma protein by gankyrin, an oncogenic ankyrin-repeat protein overexpressed in hepatomas. Nat Med 6: 96–99.

    Article  CAS  Google Scholar 

  • Higashitsuji H, Higashitsuji H, Itoh K, Sakurai T, Nagao T, Sumitomo H et al. (2005). The oncoprotein gankyrin binds to MDM2/HDM2, enhancing ubiquitylation and degradation of p53. Cancer Cell 8: 75–87.

    Article  CAS  Google Scholar 

  • Homma S, Jin X, Wang G, Tu N, Min J, Yanasak N et al. (2007). Demyelination, astrogliosis and accumulation of ubiquitinated proteins, hallmarks of CNS disease in hsf1-deficient mice. J Neurosci 27: 7974–7986.

    Article  CAS  Google Scholar 

  • Jin X, Moskophidis D, Hu Y, Phillips A, Mivechi NF . (2009). Heat shock factor 1 deficiency via its downstream target gene alphaB-crystallin (Hspb5) impairs p53 degradation. J Cell Biochem 107: 504–515.

    Article  CAS  Google Scholar 

  • Kawazoe Y, Nakai A, Tanabe M, Nagata K . (1998). Proteasome inhibition leads to the activation of all members of the heat-shock-factor family. Eur J Biochem 255: 356–362.

    Article  CAS  Google Scholar 

  • Kisselev AF, Goldberg AL . (2005). Monitoring activity and inhibition of 26S proteasomes with fluorogenic peptide substrates. Methods Enzymol 398: 364–378.

    Article  CAS  Google Scholar 

  • Kroeger PE, Morimoto RI . (1994). Selection of new HSF1 and HSF2 DNA-binding sites reveals difference in trimer cooperativity. Mol Cell Biol 14: 7592–7603.

    Article  CAS  Google Scholar 

  • Loison F, Debure L, Nizard P, le Goff P, Michel D, le Dréan Y . (2006). Up-regulation of the clusterin gene after proteotoxic stress: implication of HSF1-HSF2 heterocomplexes. Biochem J 395: 223–231.

    Article  CAS  Google Scholar 

  • McMillan DR, Xiao X, Shao L, Graves K, Benjamin IJ . (1998). Targeted disruption of heat shock transcription factor 1 abolishes thermotolerance and protection against heat-inducible apoptosis. J Biol Chem 273: 7523–7528.

    Article  CAS  Google Scholar 

  • McMillan DR, Christians E, Forster M, Xiao X, Connell P, Plumier JC et al. (2002). Heat shock transcription factor 2 is not essential for embryonic development, fertility, or adult cognitive and psychomotor function in mice. Mol Cell Biol 22: 8005–8014.

    Article  CAS  Google Scholar 

  • Meiners S, Heyken D, Weller A, Ludwig A, Stangl K, Kloetzel PM et al. (2003). Inhibition of proteasome activity induces concerted expression of proteasome genes and de novo formation of mammalian proteasomes. J Biol Chem 278: 21517–21525.

    Article  CAS  Google Scholar 

  • Muratani M, Tansey WP . (2003). How the ubiquitin-proteasome system controls transcription. Nat Rev Mol Cell Biol 4: 192–201.

    Article  CAS  Google Scholar 

  • Nencioni A, Grünebach F, Patrone F, Ballestrero A, Brossart P . (2007). Proteasome inhibitors: antitumor effects and beyond. Leukemia 21: 30–36.

    Article  CAS  Google Scholar 

  • Oerlemans R, Franke NE, Assaraf YG, Cloos J, van Zantwijk I, Berkers CR et al. (2008). Molecular basis of bortezomib resistance: proteasome subunit beta5 (PSMB5) gene mutation and overexpression of PSMB5 protein. Blood 112: 2489–2499.

    Article  CAS  Google Scholar 

  • Ostling P, Björk JK, Roos-Mattjus P, Mezger V, Sistonen L . (2007). Heat shock factor 2 (HSF2) contributes to inducible expression of hsp genes through interplay with HSF1. J Biol Chem 282: 7077–7086.

    Article  Google Scholar 

  • Paul S . (2008). Dysfunction of the ubiquitin-proteasome system in multiple disease conditions: therapeutic approaches. Bioessays 30: 1172–1184.

    Article  CAS  Google Scholar 

  • Pickart CM, Cohen RE . (2004). Proteasomes and their kin: proteases in the machine age. Nat Rev Mol Cell Biol 5: 177–187.

    Article  CAS  Google Scholar 

  • Pipas JM, Levine AJ . (2001). Role of T antigen interactions with p53 in tumorigenesis. Semin Cancer Biol 11: 23–30.

    Article  CAS  Google Scholar 

  • Pirkkala L, Alastalo TP, Zuo X, Benjamin IJ, Sistonen L . (2000). Disruption of heat shock factor 1 reveals an essential role in the ubiquitin proteolytic pathway. Mol Cell Biol 20: 2670–2675.

    Article  CAS  Google Scholar 

  • Pirkkala L, Nykänen P, Sistonen L . (2001). Roles of heat shock transcription factors in regulation of heat shock response and beyond. FASEB J 15: 1118–1131.

    Article  CAS  Google Scholar 

  • Rückrich T, Kraus M, Gogel J, Beck A, Ovaa H, Verdoes M et al. (2009). Characterization of the ubiquitin-proteasome system in bortezomib-adapted cells. Leukemia 23: 1098–1105.

    Article  Google Scholar 

  • Sandqvist A, Björk JK, Akerfelt M, Chitikova Z, Grichine A, Vourc′h C et al. (2009). Heterotrimerization of heat-shock factors 1 and 2 provides a transcriptional switch in response to distinct stimuli. Mol Biol Cell 20: 1340–1347.

    Article  CAS  Google Scholar 

  • Sato Y, Sakamoto K, Sei M, Ewis AA, Nakahori Y . (2009). Proteasome subunits are regulated and expressed in comparable concentrations as a functional cluster. Biochem Biophys Res Commun 378: 795–798.

    Article  CAS  Google Scholar 

  • Schwartz AL, Ciechanover A . (1999). The ubiquitin-proteasome pathway and pathogenesis of human diseases. Annu Rev Med 50: 57–74.

    Article  CAS  Google Scholar 

  • Sistonen L, Sarge KD, Phillips B, Abravaya K, Morimoto RI . (1992). Activation of heat shock factor 2 during hemin-induced differentiation of human erythroleukemia cells. Mol Cell Biol 12: 4104–4111.

    Article  CAS  Google Scholar 

  • Taylor DM, Kabashi E, Agar JN, Minotti S, Durham HD . (2005). Proteasome activity or expression is not altered by activation of the heat shock transcription factor Hsf1 in cultured fibroblasts or myoblasts. Cell Stress Chaperones 10: 230–241.

    Article  CAS  Google Scholar 

  • Trinklein ND, Murray JI, Hartman SJ, Botstein D, Myers RM . (2004). The role of heat shock transcription factor 1 in the genome-wide regulation of the mammalian heat shock response. Mol Biol Cell 15: 1254–1261.

    Article  CAS  Google Scholar 

  • Tsirigotis M, Thurig S, Dubé M, Vanderhyden BC, Zhang M, Gray DA . (2001). Analysis of ubiquitination in vivo using a transgenic mouse model. Biotechniques 31: 120–130.

    Article  CAS  Google Scholar 

  • Twombly R . (2003). First proteasome inhibitor approved for multiple myeloma. J Natl Cancer Inst 95: 845.

    Article  Google Scholar 

  • Wilkerson DC, Skaggs HS, Sarge KD . (2007). HSF2 binds to the Hsp90, Hsp27, and c-Fos promoters constitutively and modulates their expression. Cell Stress Chaperones 12: 283–290.

    Article  CAS  Google Scholar 

  • Xing H, Wilkerson DC, Mayhew CN, Lubert EJ, Skaggs HS, Goodson ML et al. (2005). Mechanism of hsp70i gene bookmarking. Science 307: 421–423.

    Article  CAS  Google Scholar 

  • Yamamoto N, Takemori Y, Sakurai M, Sugiyama K, Sakurai H . (2009). Differential recognition of heat shock elements by members of the heat shock transcription factor family. FEBS J 276: 1962–1974.

    Article  CAS  Google Scholar 

  • Zaarur N, Gabai VL, Porco Jr JA, Calderwood S, Sherman MY . (2006). Targeting heat shock response to sensitize cancer cells to proteasome and Hsp90 inhibitors. Cancer Res 66: 1783–1791.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Cancéropole Grand Ouest and CNRS. SL and FLM were supported by a fellowship from the French Ministry of Higher Education and Research (MENRT), and FD by a fellowship from the ‘Association pour la Recherche sur le Cancer’ (ARC). We thank Dr V Mezger (UMR CNRS 7216, Paris, France) for the gift of immortalized MEFs, and V Noel for the help in in silico analysis. We also thank Frédéric Percevault for the establishment of a stable clone expressing HSF2 from Hsf2−/− iMEFs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Le Dréan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lecomte, S., Desmots, F., Le Masson, F. et al. Roles of heat shock factor 1 and 2 in response to proteasome inhibition: consequence on p53 stability. Oncogene 29, 4216–4224 (2010). https://doi.org/10.1038/onc.2010.171

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.171

Keywords

This article is cited by

Search

Quick links