Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Pdcd4 repression of lysyl oxidase inhibits hypoxia-induced breast cancer cell invasion

Abstract

Metastasis to bone, liver and lungs is the primary cause of death in breast cancer patients. Our studies have revealed that the novel tumor suppressor Pdcd4 inhibits breast cancer cell migration and invasion in vitro. Loss of Pdcd4 in human nonmetastatic breast cancer cells increased the expression of lysyl oxidase (LOX) mRNA. LOX is a hypoxia-inducible amine oxidase, the activity of which enhances breast cancer cell invasion in vitro and in vivo. Specific inhibition of LOX activity by β-aminopropionitrile or small interfering RNA decreased the invasiveness of T47D and MCF7 breast cancer cells attenuated for Pdcd4 function. Most significantly, loss of Pdcd4 augments hypoxia induction of LOX as well. Conversely, overexpression of Pdcd4 significantly reversed the hypoxia induction of LOX expression in T47D cells attenuated for Pdcd4. However, Pdcd4 did not affect hypoxia-inducible factor-1 (HIF-1) protein expression or HIF-1-responsive element-luciferase activity in response to hypoxia, suggesting that Pdcd4 regulation of LOX occurs through an HIF-independent mechanism. Nevertheless, the loss of Pdcd4 early in cancer progression may have an important role in the increased sensitivity of cancer cells to hypoxia through increased LOX activity and concomitant enhanced invasiveness.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Arsham AM, Plas DR, Thompson CB, Simon MC . (2004). Akt and hypoxia-inducible factor-1 independently enhance tumor growth and angiogenesis. Cancer Res 64: 3500–3507.

    Article  CAS  PubMed  Google Scholar 

  • Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S et al. (2008). MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27: 2128–2136.

    Article  CAS  PubMed  Google Scholar 

  • Atsawasuwan P, Mochida Y, Katafuchi M, Kaku M, Fong KS, Csiszar K et al. (2008). Lysyl oxidase binds transforming growth factor-beta and regulates its signaling via amine oxidase activity. J Biol Chem 283: 34229–34240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bedogni B, Welford SM, Cassarino DS, Nickoloff BJ, Giaccia AJ, Powell MB . (2005). The hypoxic microenvironment of the skin contributes to Akt-mediated melanocyte transformation. Cancer Cell 8: 443–454.

    Article  CAS  PubMed  Google Scholar 

  • Bitomsky N, Bohm M, Klempnauer KH . (2004). Transformation suppressor protein Pdcd4 interferes with JNK-mediated phosphorylation of c-Jun and recruitment of the coactivator p300 by c-Jun. Oncogene 23: 7484–7493.

    Article  CAS  PubMed  Google Scholar 

  • Chen HH, Su WC, Lin PW, Guo HR, Lee WY . (2007). Hypoxia-inducible factor-1alpha correlates with MET and metastasis in node-negative breast cancer. Breast Cancer Res Treat 103: 167–175.

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Knosel T, Kristiansen G, Pietas A, Garber ME, Matsuhashi S et al. (2003). Loss of PDCD4 expression in human lung cancer correlates with tumour progression and prognosis. J Pathol 200: 640–646.

    Article  CAS  PubMed  Google Scholar 

  • Cmarik JL, Min H, Hegamyer G, Zhan S, Kulesz-Martin M, Yoshinaga H et al. (1999). Differentially expressed protein Pdcd4 inhibits tumor promoter-induced neoplastic transformation. Proc Natl Acad Sci USA 96: 14037–14042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Csiszar K, Entersz I, Trackman PC, Samid D, Boyd CD . (1996). Functional analysis of the promoter and first intron of the human lysyl oxidase gene. Mol Biol Rep 23: 97–108.

    Article  CAS  PubMed  Google Scholar 

  • Davis BN, Hilyard AC, Lagna G, Hata A . (2008). SMAD proteins control DROSHA-mediated microRNA maturation. Nature 454: 56–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denko NC, Fontana LA, Hudson KM, Sutphin PD, Raychaudhuri S, Altman R et al. (2003). Investigating hypoxic tumor physiology through gene expression patterns. Oncogene 22: 5907–5914.

    Article  CAS  PubMed  Google Scholar 

  • Dorrello NV, Peschiaroli A, Guardavaccaro D, Colburn NH, Sherman NE, Pagano M . (2006). S6K1- and betaTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth. Science 314: 467–471.

    Article  CAS  PubMed  Google Scholar 

  • Erler JT, Bennewith KL, Nicolau M, Dornhofer N, Kong C, Le QT et al. (2006). Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 440: 1222–1226.

    Article  CAS  PubMed  Google Scholar 

  • Erler JT, Giaccia AJ . (2006). Lysyl oxidase mediates hypoxic control of metastasis. Cancer Res 66: 10238–10241.

    Article  CAS  PubMed  Google Scholar 

  • Goke R, Barth P, Schmidt A, Samans B, Lankat-Buttgereit B . (2004a). Programmed cell death protein 4 suppresses CDK1/cdc2 via induction of p21(Waf1/Cip1). Am J Physiol Cell Physiol 287: C1541–C1546.

    Article  CAS  PubMed  Google Scholar 

  • Goke R, Gregel C, Goke A, Arnold R, Schmidt H, Lankat-Buttgereit B . (2004b). Programmed cell death protein 4 (PDCD4) acts as a tumor suppressor in neuroendocrine tumor cells. Ann N Y Acad Sci 1014: 220–221.

    Article  PubMed  Google Scholar 

  • Ivan M, Harris AL, Martelli F, Kulshreshtha R . (2008). Hypoxia response and microRNAs: no longer two separate worlds. J Cell Mol Med 12: 1426–1431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanov SV, Kuzmin I, Wei MH, Pack S, Geil L, Johnson BE et al. (1998). Down-regulation of transmembrane carbonic anhydrases in renal cell carcinoma cell lines by wild-type von Hippel-Lindau transgenes. Proc Natl Acad Sci USA 95: 12596–12601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jansen AP, Camalier CE, Colburn NH . (2005). Epidermal expression of the translation inhibitor programmed cell death 4 suppresses tumorigenesis. Cancer Res 65: 6034–6041.

    Article  CAS  PubMed  Google Scholar 

  • Jansen AP, Camalier CE, Stark C, Colburn NH . (2004). Characterization of programmed cell death 4 in multiple human cancers reveals a novel enhancer of drug sensitivity. Mol Cancer Ther 3: 103–110.

    CAS  PubMed  Google Scholar 

  • Jeay S, Pianetti S, Kagan HM, Sonenshein GE . (2003). Lysyl oxidase inhibits ras-mediated transformation by preventing activation of NF-kappa B. Mol Cell Biol 23: 2251–2263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kagan HM, Li W . (2003). Lysyl oxidase: properties, specificity, and biological roles inside and outside of the cell. J Cell Biochem 88: 660–672.

    Article  CAS  PubMed  Google Scholar 

  • Kagan HM, Trackman PC . (1991). Properties and function of lysyl oxidase. Am J Respir Cell Mol Biol 5: 206–210.

    Article  CAS  PubMed  Google Scholar 

  • Kang Y . (2005). Functional genomic analysis of cancer metastasis: biologic insights and clinical implications. Expert Rev Mol Diagn 5: 385–395.

    Article  CAS  PubMed  Google Scholar 

  • Kirkegaard T, Witton CJ, McGlynn LM, Tovey SM, Dunne B, Lyon A et al. (2005). AKT activation predicts outcome in breast cancer patients treated with tamoxifen. J Pathol 207: 139–146.

    Article  CAS  PubMed  Google Scholar 

  • Kirschmann DA, Seftor EA, Fong SF, Nieva DR, Sullivan CM, Edwards EM et al. (2002). A molecular role for lysyl oxidase in breast cancer invasion. Cancer Res 62: 4478–4483.

    CAS  PubMed  Google Scholar 

  • Kronblad A, Jirstrom K, Ryden L, Nordenskjold B, Landberg G . (2006). Hypoxia inducible factor-1alpha is a prognostic marker in premenopausal patients with intermediate to highly differentiated breast cancer but not a predictive marker for tamoxifen response. Int J Cancer 118: 2609–2616.

    Article  CAS  PubMed  Google Scholar 

  • Kulshreshtha R, Davuluri RV, Calin GA, Ivan M . (2008). A microRNA component of the hypoxic response. Cell Death Differ 15: 667–671.

    Article  CAS  PubMed  Google Scholar 

  • Kulshreshtha R, Ferracin M, Wojcik SE, Garzon R, Alder H, Agosto-Perez FJ et al. (2007). A microRNA signature of hypoxia. Mol Cell Biol 27: 1859–1867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LaRonde-LeBlanc N, Santhanam AN, Baker AR, Wlodawer A, Colburn NH . (2007). Structural basis for inhibition of translation by the tumor suppressor Pdcd4. Mol Cell Biol 27: 147–156.

    Article  CAS  PubMed  Google Scholar 

  • Leupold JH, Yang HS, Colburn NH, Asangani I, Post S, Allgayer H . (2007). Tumor suppressor Pdcd4 inhibits invasion/intravasation and regulates urokinase receptor (u-PAR) gene expression via Sp-transcription factors. Oncogene 26: 4550–4562.

    Article  CAS  PubMed  Google Scholar 

  • Li T, Li D, Sha J, Sun P, Huang Y . (2009). MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells. Biochem Biophys Res Commun 383: 280–285.

    Article  CAS  PubMed  Google Scholar 

  • Li YM, Zhou BP, Deng J, Pan Y, Hay N, Hung MC . (2005). A hypoxia-independent hypoxia-inducible factor-1 activation pathway induced by phosphatidylinositol-3 kinase/Akt in HER2 overexpressing cells. Cancer Res 65: 3257–3263.

    Article  CAS  PubMed  Google Scholar 

  • Lu Z, Liu M, Stribinskis V, Klinge CM, Ramos KS, Colburn NH et al. (2008). MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 27: 4373–4379.

    Article  CAS  PubMed  Google Scholar 

  • Lundgren K, Holm C, Landberg G . (2007). Hypoxia and breast cancer: prognostic and therapeutic implications. Cell Mol Life Sci 64: 3233–3247.

    Article  CAS  PubMed  Google Scholar 

  • Melillo G, Sausville EA, Cloud K, Lahusen T, Varesio L, Senderowicz AM . (1999). Flavopiridol, a protein kinase inhibitor, down-regulates hypoxic induction of vascular endothelial growth factor expression in human monocytes. Cancer Res 59: 5433–5437.

    CAS  PubMed  Google Scholar 

  • Min C, Kirsch KH, Zhao Y, Jeay S, Palamakumbura AH, Trackman PC et al. (2007). The tumor suppressor activity of the lysyl oxidase propeptide reverses the invasive phenotype of Her-2/neu-driven breast cancer. Cancer Res 67: 1105–1112.

    Article  CAS  PubMed  Google Scholar 

  • Mudduluru G, Medved F, Grobholz R, Jost C, Gruber A, Leupold JH et al. (2007). Loss of programmed cell death 4 expression marks adenoma-carcinoma transition, correlates inversely with phosphorylated protein kinase B, and is an independent prognostic factor in resected colorectal cancer. Cancer 110: 1697–1707.

    Article  CAS  PubMed  Google Scholar 

  • Nieves-Alicea R, Colburn NH, Simeone AM, Tari AM . (2008). Programmed cell death 4 inhibits breast cancer cell invasion by increasing tissue inhibitor of metalloproteinases-2 expression. Breast Cancer Res Treat 114: 203–209.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pastorek J, Pastorekova S, Callebaut I, Mornon JP, Zelnik V, Opavsky R et al. (1994). Cloning and characterization of MN, a human tumor-associated protein with a domain homologous to carbonic anhydrase and a putative helix-loop-helix DNA binding segment. Oncogene 9: 2877–2888.

    CAS  PubMed  Google Scholar 

  • Payne SL, Fogelgren B, Hess AR, Seftor EA, Wiley EL, Fong SF et al. (2005). Lysyl oxidase regulates breast cancer cell migration and adhesion through a hydrogen peroxide-mediated mechanism. Cancer Res 65: 11429–11436.

    Article  CAS  PubMed  Google Scholar 

  • Payne SL, Hendrix MJ, Kirschmann DA . (2007). Paradoxical roles for lysyl oxidases in cancer—a prospect. J Cell Biochem 101: 1338–1354.

    Article  CAS  PubMed  Google Scholar 

  • Postovit LM, Abbott DE, Payne SL, Wheaton WW, Margaryan NV, Sullivan R et al. (2008). Hypoxia/reoxygenation: a dynamic regulator of lysyl oxidase-facilitated breast cancer migration. J Cell Biochem 103: 1369–1378.

    Article  CAS  PubMed  Google Scholar 

  • Rucker RB, Kosonen T, Clegg MS, Mitchell AE, Rucker BR, Uriu-Hare JY et al. (1998). Copper, lysyl oxidase, and extracellular matrix protein cross-linking. Am J Clin Nutr 67: 996S–1002S.

    Article  CAS  PubMed  Google Scholar 

  • Schindl M, Schoppmann SF, Samonigg H, Hausmaninger H, Kwasny W, Gnant M et al. (2002). Overexpression of hypoxia-inducible factor 1alpha is associated with an unfavorable prognosis in lymph node-positive breast cancer. Clin Cancer Res 8: 1831–1837.

    CAS  PubMed  Google Scholar 

  • Schmid T, Jansen AP, Baker AR, Hegamyer G, Hagan JP, Colburn NH . (2008). Translation inhibitor Pdcd4 is targeted for degradation during tumor promotion. Cancer Res 68: 1254–1260.

    Article  CAS  PubMed  Google Scholar 

  • Schmitz KJ, Otterbach F, Callies R, Levkau B, Holscher M, Hoffmann O et al. (2004). Prognostic relevance of activated Akt kinase in node-negative breast cancer: a clinicopathological study of 99 cases. Mod Pathol 17: 15–21.

    Article  CAS  PubMed  Google Scholar 

  • Smith-Mungo LI, Kagan HM . (1998). Lysyl oxidase: properties, regulation and multiple functions in biology. Matrix Biol 16: 387–398.

    Article  CAS  PubMed  Google Scholar 

  • Tan RS, Taniguchi T, Harada H . (1996). Identification of the lysyl oxidase gene as target of the antioncogenic transcription factor, IRF-1, and its possible role in tumor suppression. Cancer Res 56: 2417–2421.

    CAS  PubMed  Google Scholar 

  • van der Groep P, Bouter A, Menko FH, van der Wall E, van Diest PJ . (2008). High frequency of HIF-1alpha overexpression in BRCA1 related breast cancer reast. Cancer Res Treat 111: 475–480.

    Article  Google Scholar 

  • Vleugel MM, Greijer AE, Shvarts A, van der Groep P, van Berkel M, Aarbodem Y et al. (2005). Differential prognostic impact of hypoxia induced and diffuse HIF-1alpha expression in invasive breast cancer. J Clin Pathol 58: 172–177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waters LC, Veverka V, Bohm M, Schmedt T, Choong PT, Muskett FW et al. (2007). Structure of the C-terminal MA-3 domain of the tumour suppressor protein Pdcd4 and characterization of its interaction with eIF4A. Oncogene 26: 4941–4950.

    Article  CAS  PubMed  Google Scholar 

  • Wen YH, Shi X, Chiriboga L, Matsahashi S, Yee H, Afonja O . (2007). Alterations in the expression of PDCD4 in ductal carcinoma of the breast. Oncol Rep 18: 1387–1393.

    CAS  PubMed  Google Scholar 

  • Yagata H, Harigaya K, Suzuki M, Nagashima T, Hashimoto H, Ishii G et al. (2003). Comedonecrosis is an unfavorable marker in node-negative invasive breast carcinoma. Pathol Int 53: 501–506.

    Article  PubMed  Google Scholar 

  • Yang HS, Cho MH, Zakowicz H, Hegamyer G, Sonenberg N, Colburn NH . (2004). A novel function of the MA-3 domains in transformation and translation suppressor Pdcd4 is essential for its binding to eukaryotic translation initiation factor 4A. Mol Cell Biol 24: 3894–3906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang HS, Jansen AP, Komar AA, Zheng X, Merrick WC, Costes S et al. (2003a). The transformation suppressor Pdcd4 is a novel eukaryotic translation initiation factor 4A binding protein that inhibits translation. Mol Cell Biol 23: 26–37.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang HS, Jansen AP, Nair R, Shibahara K, Verma AK, Cmarik JL et al. (2001). A novel transformation suppressor, Pdcd4, inhibits AP-1 transactivation but not NF-kappaB or ODC transactivation. Oncogene 20: 669–676.

    Article  CAS  PubMed  Google Scholar 

  • Yang HS, Knies JL, Stark C, Colburn NH . (2003b). Pdcd4 suppresses tumor phenotype in JB6 cells by inhibiting AP-1 transactivation. Oncogene 22: 3712–3720.

    Article  CAS  PubMed  Google Scholar 

  • Yang HS, Matthews CP, Clair T, Wang Q, Baker AR, Li CC et al. (2006). Tumorigenesis suppressor Pdcd4 down-regulates mitogen-activated protein kinase kinase kinase kinase 1 expression to suppress colon carcinoma cell invasion. Mol Cell Biol 26: 1297–1306.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zakowicz H, Yang HS, Stark C, Wlodawer A, Laronde-Leblanc N, Colburn NH . (2005). Mutational analysis of the DEAD-box RNA helicase eIF4AII characterizes its interaction with transformation suppressor Pdcd4 and eIF4GI. RNA 11: 261–274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Ozaki I, Mizuta T, Hamajima H, Yasutake T, Eguchi Y et al. (2006). Involvement of programmed cell death 4 in transforming growth factor-beta1-induced apoptosis in human hepatocellular carcinoma. Oncogene 25: 6101–6112.

    Article  CAS  PubMed  Google Scholar 

  • Zhu S, Wu H, Wu F, Nie D, Sheng S, Mo YY . (2008). MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res 18: 350–359.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs Giovanni Melillo and Annamaria Rapisarda (Tumor Hypoxia Laboratory, NCI-Frederick) for helpful suggestions and for the use of reagents and hypoxia chambers. We also thank members of the Gene Regulation Section, Laboratory of Cancer Prevention, for helpful discussions. This research was supported by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A N Santhanam.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santhanam, A., Baker, A., Hegamyer, G. et al. Pdcd4 repression of lysyl oxidase inhibits hypoxia-induced breast cancer cell invasion. Oncogene 29, 3921–3932 (2010). https://doi.org/10.1038/onc.2010.158

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.158

Keywords

This article is cited by

Search

Quick links