Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

The viral tropism of two distinct oncolytic viruses, reovirus and myxoma virus, is modulated by cellular tumor suppressor gene status

Abstract

Replication-competent oncolytic viruses hold great potential for the clinical treatment of many cancers. Importantly, many oncolytic virus candidates, such as reovirus and myxoma virus, preferentially infect cancer cells bearing abnormal cellular signaling pathways. Reovirus and myxoma virus are highly responsive to activated Ras and Akt signaling pathways, respectively, for their specificity for viral oncolysis. However, considering the complexity of cancer cell populations, it is possible that other tumor-specific signaling pathways may also contribute to viral discrimination between normal versus cancer cells. Because carcinogenesis is a multistep process involving the accumulation of both oncogene activations and the inactivation of tumor suppressor genes, we speculated that not only oncogenes but also tumor suppressor genes may have an important role in determining the tropism of these viruses for cancer cells. It has been previously shown that many cellular tumor suppressor genes, such as p53, ATM and Rb, are important for maintaining genomic stability; dysfunction of these tumor suppressors may disrupt intact cellular antiviral activity due to the accumulation of genomic instability or due to interference with apoptotic signaling. Therefore, we speculated that cells with dysfunctional tumor suppressors may display enhanced susceptibility to challenge with these oncolytic viruses, as previously seen with adenovirus. We report here that both reovirus and myxoma virus preferentially infect cancer cells bearing dysfunctional or deleted p53, ATM and Rb tumor suppressor genes compared to cells retaining normal counterparts of these genes. Thus, oncolysis by these viruses may be influenced by both oncogenic activation and tumor suppressor status.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

WT reovirus:

wild-type reovirus

AV reovirus:

S1 attenuated reovirus

Myx:

myxoma virus

Myx-GFP:

GFP-expressing myxoma virus

MOI:

multiplicity of infection

References

  • Abou El Hassan MA, van der Meulen-Muileman I, Abbas S, Kruyt FA . (2004). Conditionally replicating adenoviruses kill tumor cells via a basic apoptotic machinery-independent mechanism that resembles necrosis-like programmed cell death. J Virol 78: 12243–12251.

    Article  PubMed  PubMed Central  Google Scholar 

  • Alain T, Hirasawa K, Pon KJ, Nishikawa SG, Urbanski SJ, Auer Y et al. (2002). Reovirus therapy of lymphoid malignancies. Blood 100: 4146–4153.

    Article  CAS  PubMed  Google Scholar 

  • Beà S, Salaverria I, Armengol L, Pinyol M, Fernández V, Hartmann EM et al. (2009). Uniparental disomies, homozygous deletions, amplifications, and target genes in mantle cell lymphoma revealed by integrative high-resolution whole-genome profiling. Blood 113: 3059–3069.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bischoff JR, Kirn DH, Williams A, Heise C, Horn S, Muna M et al. (1996). An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 274: 373–376.

    Article  CAS  PubMed  Google Scholar 

  • Carroll PE, Okuda M, Horn HF, Biddinger P, Stambrook PJ, Gleich LL et al. (1999). Centrosome hyperamplification in human cancer: chromosome instability induced by p53 mutation and/or Mdm2 overexpression. Oncogene 18: 1935–1944.

    Article  CAS  PubMed  Google Scholar 

  • Coffey MC, Strong JE, Forsyth PA, Lee PW . (1998). Reovirus therapy of tumors with activated Ras pathway. Science 282: 1332–1334.

    Article  CAS  PubMed  Google Scholar 

  • Dharel N, Kato N, Muroyama R, Taniguchi H, Otsuka M, Wang Y et al. (2008). Potential contribution of tumor suppressor p53 in the host defense against hepatitis C virus. Hepatology 47: 1136–1149.

    Article  CAS  PubMed  Google Scholar 

  • Duursma AM, Agami R . (2003). Ras interference as cancer therapy. Semin Cancer Biol 13: 267–273.

    Article  CAS  PubMed  Google Scholar 

  • Duncan MR, Stanish SM, Cox DC . (1978). Differential sensitivity of normal and transformed human cells to reovirus infection. J Virol 28: 444–449.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Forsyth P, Roldán G, George D, Wallace C, Palmer CA, Morris D et al. (2008). Phase I trial of intratumoral administration of reovirus in patients with histologically confirmed recurrent malignant gliomas. Mol Ther 16: 627–632.

    Article  CAS  PubMed  Google Scholar 

  • Hashiro G, Loh PC, Yau JT . (1977). The preferential cytotoxicity of reovirus for certain transformed cell lines. Arch Virol 54: 307–315.

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Qu LK, Koromilas AE . (2004). Induction of p53-dependent apoptosis in HCT116 tumor cells by RNA viruses and possible implications in virus mediated oncolysis. Cell Cycle 3: 1043–1045.

    CAS  PubMed  Google Scholar 

  • Johnston JB, Barrett JW, Chang W, Chung CS, Zeng W, Masters J et al. (2003). Role of the serine-threonine kinase PAK-1 in myxoma virus replication. J Virol 77: 5877–5888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim M, Alain T, Urbanski SJ, Kossakowska AE, Lee PWK, Forsyth PA et al. (2007a). An attenuated reovirus isolated from persistent reovirus infection exerts viral oncolysis with reduced pathogenicity. American Society for Virology (ASV) 2007 Annual Meeting; July 2007; Oregon State University: Corvallis, OR.

    Google Scholar 

  • Kim M, Egan C, Alain T, Urbanski SJ, Lee PW, Forsyth PA et al. (2007b). Acquired resistance to reoviral oncolysis in Ras-transformed fibrosarcoma cells. Oncogene 26: 4124–4134.

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Madlambayan GJ, Rahman MM, Smallwood SE, Meacham AM, Hosaka K et al. (2009). Myxoma virus targets primary human leukemic stem and progenitor cells while sparing normal hematopoietic stem and progenitor cells. Leukemia 23: 2313–2317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitagawa R, Kastan MB . (2005). The ATM-dependent DNA damage signaling pathway. Cold Spring Harb Symp Quant Biol 70: 99–109.

    Article  CAS  PubMed  Google Scholar 

  • Kozlov S, Gueven N, Keating K, Ramsay J, Lavin MF . (2003). ATP activates ataxia-telangiectasia mutated (ATM) in vitro. Importance of autophosphorylation. J Biol Chem 278: 9309–9317.

    Article  CAS  PubMed  Google Scholar 

  • Li DW, Liu JP, Schmid PC, Schlosser R, Feng H, Liu WB et al. (2006). Protein serine/threonine phosphatase-1 dephosphorylates p53 at Ser-15 and Ser-37 to modulate its transcriptional and apoptotic activities. Oncogene 25: 3006–3022.

    Article  CAS  PubMed  Google Scholar 

  • Lun X, Yang W, Alain T, Shi ZQ, Muzik H, Barrett JW et al. (2005). Myxoma virus is a novel oncolytic virus with significant antitumor activity against experimental human gliomas. Cancer Res 65: 9982–9990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lun XQ, Zhou H, Alain T, Sun B, Wang L, Barrett JW et al. (2007). Targeting human medulloblastoma: oncolytic virotherapy with myxoma virus is enhanced by rapamycin. Cancer Res 67: 8818–8827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCormick F . (2005). Future prospects for oncolytic therapy. Oncogene 24: 7817–7819.

    Article  CAS  PubMed  Google Scholar 

  • McFadden G . (2005). Poxvirus tropism. Nat Rev Microbiol 3: 201–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris SM . (2002). A role for p53 in the frequency and mechanism of mutation. Mutat Res 511: 45–62.

    Article  CAS  PubMed  Google Scholar 

  • Muñoz-Fontela C, Macip S, Martínez-Sobrido L, Brown L, Ashour J, García-Sastre A et al. (2008). Transcriptional role of p53 in interferon-mediated antiviral immunity. J Exp Med 205: 1929–1938.

    Article  PubMed  PubMed Central  Google Scholar 

  • Norman KL, Hirasawa K, Yang AD, Shields MA, Lee PW . (2004). Reovirus oncolysis: the Ras/RalGEF/p38 pathway dictates host cell permissiveness to reovirus infection. Proc Natl Acad Sci USA 101: 11099–11104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norman KL, Lee PW . (2005). Not all viruses are bad guys: the case for reovirus in cancer therapy. Drug Discov Today 10: 847–855.

    Article  CAS  PubMed  Google Scholar 

  • O′Shea CC, Johnson L, Bagus B, Choi S, Nicholas C, Shen A et al. (2004). Late viral RNA export, rather than p53 inactivation, determines ONYX-015 tumor selectivity. Cancer Cell 6: 611–623.

    Article  PubMed  Google Scholar 

  • Reid TW, Albert DM, Rabson AS, Russell P, Craft J, Chu EW et al. (1974). Characteristics of an established cell line of retinoblastoma. J Natl Cancer Inst 53: 347–360.

    Article  CAS  PubMed  Google Scholar 

  • Royds JA, Hibma M, Dix BR, Hananeia L, Russell IA, Wiles A et al. (2006). p53 promotes adenoviral replication and increases late viral gene expression. Oncogene 25: 1509–1520.

    Article  CAS  PubMed  Google Scholar 

  • Shmulevitz M, Marcato P, Lee PW . (2010). Activated Ras signaling significantly enhances reovirus replication and spread. Cancer Gene Ther 17: 69–70.

    Article  CAS  PubMed  Google Scholar 

  • Song L, Ohnuma T, Gelman IH, Holland JF . (2009). Reovirus infection of cancer cells is not due to activated Ras pathway. Cancer Gene Ther 16: 382.

    Article  CAS  PubMed  Google Scholar 

  • Strong JE, Coffey MC, Tang D, Sabinin P, Lee PW . (1998). The molecular basis of viral oncolysis: usurpation of the Ras signaling pathway by reovirus. EMBO J 17: 3351–3362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strong JE, Lee PWK . (1996). The v-erbB oncogene confers enhanced cellular susceptibility to reovirus infection. J Virol 70: 612–616.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strong JE, Tang D, Lee PWK . (1993). Evidence that the epidermal growth factor receptor on host cells confers reovirus infection efficiency. Virology 197: 405–411.

    Article  CAS  PubMed  Google Scholar 

  • Stanford M, Shaban M, Barrett JW, Gilbert PA, Bondy-Denomy J, Mackenzie L et al. (2008). Myxoma virus oncolysis of primary and metastatic B16F10 mouse tumors in vivo. Mol Ther 16: 52–59.

    Article  CAS  PubMed  Google Scholar 

  • Stanford MM, McFadden G . (2007). Myxoma virus and oncolytic virotherapy: a new biologic weapon in the war against cancer. Expert Opin Biol Ther 7: 1415–1425.

    Article  CAS  PubMed  Google Scholar 

  • Sypula J, Wang F, Ma Y, Bell J, McFadden G . (2004). Myxoma virus tropism in human tumor cells. Gene Ther Mol Biol 8: 103–114.

    Google Scholar 

  • Takaoka A, Hayakawa S, Yanai H, Stoiber D, Negishi H, Kikuchi H et al. (2003). Integration of interferon-alpha/beta signalling to p53 responses in tumour suppression and antiviral defence. Nature 424: 516–523.

    Article  CAS  PubMed  Google Scholar 

  • Tucker CA, Bebb G, Klasa RJ, Chhanabhai M, Lestou V, Horsman DE et al. (2006). Four human t(11;14)(q13;q32)-containing cell lines having classic and variant features of mantle cell lymphoma. Leuk Res 30: 449–457.

    Article  CAS  PubMed  Google Scholar 

  • Vidal L, Pandha HS, Yap TA, White CL, Twigger K, Vile RG et al. (2008). A phase I study of intravenous oncolytic reovirus type 3 Dearing in patients with advanced cancer. Clin Cancer Res 14: 7127–7137.

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Barrett JW, Ma Y, Dekaban GA, McFadden G . (2009). Induction of alpha/beta interferon by myxoma virus is selectively abrogated when primary mouse embryo fibroblasts become immortalized. J Virol 83: 5928–5932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, Barrett JW, Stanford M, Werden SJ, Johnston JB, Gao X et al. (2006). Infection of human cancer cells with myxoma virus requires Akt activation via interaction with a viral ankyrin-repeat host range factor. Proc Natl Acad Sci USA 103: 4640–4645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White E . (1994). Tumour biology. p53, guardian of Rb. Nature 371: 21–22.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the Canadian Institutes of Health Research and the Canadian Breast Cancer Foundation (to RNJ) and a start-up grant from the University of Florida College of Medicine and NIH grant R01 CA138541 (to GM). GM is an International Scholar of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R N Johnston.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, M., Williamson, C., Prudhomme, J. et al. The viral tropism of two distinct oncolytic viruses, reovirus and myxoma virus, is modulated by cellular tumor suppressor gene status. Oncogene 29, 3990–3996 (2010). https://doi.org/10.1038/onc.2010.137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.137

Keywords

This article is cited by

Search

Quick links