Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Reversibility and recurrence of IGF-IR-induced mammary tumors

Abstract

The type-I insulin-like growth factor receptor (IGF-IR) is frequently overexpressed in breast cancer and therapeutic agents targeting IGF-IR are currently in development. The ultimate success of anti-IGF-IR therapies will depend on the extent to which established tumors remain dependent upon IGF-IR signaling for sustained growth. To investigate the potential benefits and pitfalls of targeting IGF-IR, we used a doxycycline inducible mouse model of IGF-IR initiated breast cancer. We found that downregulation of IGF-IR results in tumor-size-dependent regression to an undetectable state. Partially regressed tumors almost always resumed growth in the absence of doxycycline and a proportion of tumors that regressed to an undetectable state ultimately recurred. This re-emergence of tumor growth in the absence of doxycycline was facilitated by IGF-IR-dependent and IGF-IR-independent mechanisms. Tumor escape from IGF-IR dependence was associated with an epithelial to mesenchymal transition and upregulation of transcriptional repressors of E-cadherin. These results suggest that tumors initiated by IGF-IR have the ability to become independent of this initiating oncogene, and IGF-IR independence is associated with characteristics consistent with an epithelial to mesenchymal transition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Aguirre-Ghiso JA . (2007). Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 7: 834–846.

    Article  CAS  Google Scholar 

  • Ali S, Coombes RC . (2002). Endocrine-responsive breast cancer and strategies for combating resistance. Nat Rev Cancer 2: 101–112.

    Article  Google Scholar 

  • Arteaga C, Kitten K, Coronado E . (1989). Blockade of the type I somatomedin receptor inhibits growth of human breast cancer cells in athymic mice. J Clin Invest 84: 1418–1423.

    Article  CAS  Google Scholar 

  • Bates P, Fisher R, Ward A, Richardson L, Hill DJ, Graham CF . (1995). Mammary cancer in transgenic mice expressing insulin-like growth factor II (IGF-II). Br J Cancer 72: 1189–1193.

    Article  CAS  Google Scholar 

  • Boxer RB, Jang JW, Sintasath L, Chodosh LA . (2004). Lack of sustained regression of c-MYC-induced mammary adenocarcinomas following brief or prolonged MYC inactivation. Cancer Cell 6: 577–586.

    Article  CAS  Google Scholar 

  • Burtrum D, Zhu Z, Lu D, Anderson DM, Prewett M, Pereira DS et al. (2003). A fully human monoclonal antibody to the insulin-like growth factor I receptor blocks ligand-dependent signaling and inhibits human tumor growth in vivo. Cancer Res 63: 8912–8921.

    CAS  PubMed  Google Scholar 

  • Carboni JM, Lee AV, Hadsell DL, Rowley BR, Lee FY, Bol DK et al. (2005). Tumor development by transgenic expression of a constitutively active insulin-like growth factor I receptor. Cancer Res 65: 3781–3787.

    Article  CAS  Google Scholar 

  • Chaffer CL, Brennan JP, Slavin JL, Blick T, Thompson EW, Williams ED . (2006). Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis: role of fibroblast growth factor receptor-2. Cancer Res 66: 11271–11278.

    Article  CAS  Google Scholar 

  • Chernicky CL, Yi L, Tan H, Gan SU, Ilan J . (2000). Treatment of human breast cancer cells with antisense RNA to the type I insulin-like growth factor receptor inhibits cell growth, suppresses tumorigenesis, alters the metastatic potential, and prolongs survival in vivo. Cancer Gene Ther 7: 384–395.

    Article  CAS  Google Scholar 

  • D’Cruz CM, Gunther EJ, Boxer RB, Hartman JL, Sintasath L, Moody SE et al. (2001). c-MYC induces mammary tumorigenesis by means of a preferred pathway involving spontaneous Kras2 mutations. Nat Med 7: 235–239.

    Article  Google Scholar 

  • Debies MT, Gestl SA, Mathers JL, Mikse OR, Leonard TL, Moody SE et al. (2008). Tumor escape in a Wnt1-dependent mouse breast cancer model is enabled by p19Arf/p53 pathway lesions but not p16 Ink4a loss. J Clin Invest 118: 51–63.

    Article  CAS  Google Scholar 

  • Divisova J, Kuiatse I, Lazard Z, Weiss H, Vreeland F, Hadsell DL et al. (2006). The growth hormone receptor antagonist pegvisomant blocks both mammary gland development and MCF-7 breast cancer xenograft growth. Breast Cancer Res Treat 98: 315–327.

    Article  CAS  Google Scholar 

  • Dunn SE, Ehrlich M, Sharp NJ, Keiss K, Solomon G, Hawkins R et al. (1998). A dominant negative mutant of the insulin-like growth factor-I receptor inhibits the adhesion, invasion and metastasis of breast cancer. Cancer Res 58: 3353–3361.

    CAS  PubMed  Google Scholar 

  • Eger A, Aigner K, Sonderegger S, Dampier B, Oehler S, Schreiber M et al. (2005). DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene 24: 2375–2385.

    Article  CAS  Google Scholar 

  • Feng Y, Zhu Z, Xiao X, Choudhry V, Barrett JC, Dimitrov DS . (2006). Novel human monoclonal antibodies to insulin-like growth factor (IGF)-II that potently inhibit the IGF receptor type I signal transduction function. Mol Cancer Ther 5: 114–120.

    Article  CAS  Google Scholar 

  • Giani C, Cullen KJ, Campani D, Rasmussen A . (1996). IGF-II mRNA and protein are expressed in the stroma of invasive breast cancers: an in situ hybridization and immunohistochemistry study. Breast Cancer Res Treat 41: 43–50.

    Article  CAS  Google Scholar 

  • Goetsch L, Gonzalez A, Leger O, Beck A, Pauwels PJ, Haeuw JF et al. (2005). A recombinant humanized anti-insulin-like growth factor receptor type I antibody (h7C10) enhances the antitumor activity of vinorelbine and anti-epidermal growth factor receptor therapy against human cancer xenografts. Int J Cancer 113: 316–328.

    Article  CAS  Google Scholar 

  • Gunther EJ, Moody SE, Belka GK, Hahn KT, Innocent N, Dugan KD et al. (2003). Impact of p53 loss on reversal and recurrence of conditional Wnt-induced tumorigenesis. Genes Dev 17: 488–501.

    Article  CAS  Google Scholar 

  • Hadsell DL, Murphy KL, Bonnette SG, Reece N, Laucirica R, Rosen JM . (2000). Cooperative interaction between mutant p53 and des(1-3)IGF-I accelerates mammary tumorigenesis. Oncogene 19: 889–898.

    Article  CAS  Google Scholar 

  • Haluska P, Shaw HM, Batzel GN, Yin D, Molina JR, Molife LR et al. (2007). Phase I dose escalation study of the anti insulin-like growth factor-I receptor monoclonal antibody CP-751,871 in patients with refractory solid tumors. Clin Cancer Res 13: 5834–5840.

    Article  CAS  Google Scholar 

  • Hankinson SE, Willett WC, Colditz GA, Hunter DJ, Michaud DS, Deroo B et al. (1998). Circulating concentrations of insulin-like growth factor-I and risk of breast cancer. Lancet 351: 1393–1396.

    Article  CAS  Google Scholar 

  • Hudis CA . (2007). Trastuzumab—mechanism of action and use in clinical practice. N Engl J Med 357: 39–51.

    Article  CAS  Google Scholar 

  • Hugo H, Ackland ML, Blick T, Lawrence MG, Clements JA, Williams ED et al. (2007). Epithelial-mesenchymal and mesenchymal-epithelial transitions in carcinoma progression. J Cell Physiol 213: 374–383.

    Article  CAS  Google Scholar 

  • Jones RA, Campbell CI, Gunther EJ, Chodosh LA, Petrik JJ, Khokha R et al. (2007). Transgenic overexpression of IGF-IR disrupts mammary ductal morphogenesis and induces tumor formation. Oncogene 26: 1636–1644.

    Article  CAS  Google Scholar 

  • Jones RA, Campbell CI, Petrik JJ, Moorehead RA . (2008). Characterization of a novel primary mammary tumor cell line reveals that cyclin D1 is regulated by the type I insulin-like growth factor receptor. Mol Cancer Res 6: 819–828.

    Article  CAS  Google Scholar 

  • Kato M, Zhang J, Wang M, Lanting L, Yuan H, Rossi JJ et al. (2007). MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci USA 104: 3432–3437.

    Article  CAS  Google Scholar 

  • Kurebayashi J . (2007). Current clinical trials of endocrine therapy for breast cancer. Breast Cancer 14: 200–214.

    Article  Google Scholar 

  • LeRoith D, Roberts Jr CT . (2003). The insulin-like growth factor system and cancer. Cancer Lett 195: 127–137.

    Article  CAS  Google Scholar 

  • Linnerth NM, Sirbovan K, Moorehead RA . (2005). Use of a transgenic mouse model to identify markers of human lung tumors. Int J Cancer 114: 977–982.

    Article  CAS  Google Scholar 

  • Lu Y, Zi X, Zhao Y, Mascarenhas D, Pollak M . (2001). Insulin-like growth factor-I receptor signaling and resistance to trastuzumab (Herceptin). J Natl Cancer Inst 93: 1852–1857.

    Article  CAS  Google Scholar 

  • Mitsiades CS, Mitsiades NS, McMullan CJ, Poulaki V, Shringarpure R, Akiyama M et al. (2004). Inhibition of the insulin-like growth factor receptor-1 tyrosine kinase activity as a therapeutic strategy for multiple myeloma, other hematologic malignancies, and solid tumors. Cancer Cell 5: 221–230.

    Article  CAS  Google Scholar 

  • Moody SE, Perez D, Pan TC, Sarkisian CJ, Portocarrero CP, Sterner CJ et al. (2005). The transcriptional repressor Snail promotes mammary tumor recurrence. Cancer Cell 8: 197–209.

    Article  CAS  Google Scholar 

  • Moody SE, Sarkisian CJ, Hahn KT, Gunther EJ, Pickup S, Dugan KD et al. (2002). Conditional activation of Neu in the mammary epithelium of transgenic mice results in reversible pulmonary metastasis. Cancer Cell 2: 451–461.

    Article  CAS  Google Scholar 

  • Nahta R, Esteva FJ . (2007). Trastuzumab: triumphs and tribulations. Oncogene 26: 3637–3643.

    Article  CAS  Google Scholar 

  • Nichols KD, Kirby GM . (2008). Expression of cytochrome P450 2A5 in a glucose-6-phosphate dehydrogenase-deficient mouse model of oxidative stress. Biochem Pharmacol 75: 1230–1239.

    Article  CAS  Google Scholar 

  • Paik S . (1992). Expression of IGF-I and IGF-II mRNA in breast tissue. Breast Cancer Res Treat 22: 31–38.

    Article  CAS  Google Scholar 

  • Parisot JP, Hu XF, DeLuise M, Zalcberg JR . (1999). Altered expression of the IGF-1 receptor in a tamoxifen-resistant human breast cancer cell line. Br J Cancer 79: 693–700.

    Article  CAS  Google Scholar 

  • Pattyn F, Robbrecht P, De PA, Speleman F, Vandesompele J . (2006). RTPrimerDB: the real-time PCR primer and probe database, major update 2006. Nucleic Acids Res 34: D684–D688.

    Article  CAS  Google Scholar 

  • Peinado H, Olmeda D, Cano A . (2007). Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 7: 415–428.

    Article  CAS  Google Scholar 

  • Podsypanina K, Politi K, Beverly LJ, Varmus HE . (2008). Oncogene cooperation in tumor maintenance and tumor recurrence in mouse mammary tumors induced by Myc and mutant Kras. Proc Natl Acad Sci USA 105: 5242–5247.

    Article  CAS  Google Scholar 

  • Pollak MN, Schernhammer ES, Hankinson SE . (2004). Insulin-like growth factors and neoplasia. Nat Rev Cancer 4: 505–518.

    Article  CAS  Google Scholar 

  • Pravtcheva DD, Wise TL . (1998). Metastasizing mammary carcinomas in H19 enhancers-Igf2 transgenic mice. J Exp Zool 281: 43–57.

    Article  CAS  Google Scholar 

  • Renehan AG, Zwahlen M, Minder C, O’Dwyer ST, Shalet SM, Egger M . (2004). Insulin-like growth factor (IGF)-I, IGF binding protein-3, and cancer risk: systematic review and meta-regression analysis. Lancet 363: 1346–1353.

    Article  CAS  Google Scholar 

  • Resnik JL, Reichart DB, Huey K, Webster NJG, Seely BL . (1998). Elevated insulin-like growth factor I receptor autophosphorylation and kinase activity in human breast cancer. Cancer Res 58: 1159–1164.

    CAS  PubMed  Google Scholar 

  • Rowinsky EK, Youssoufian H, Tonra JR, Solomon P, Burtrum D, Ludwig DL . (2007). IMC-A12, a human IgG1 monoclonal antibody to the insulin-like growth factor I receptor. Clin Cancer Res 13: 5549s–5555s.

    Article  CAS  Google Scholar 

  • Singer C, Rasmussen A, Smith HS, Lippman ME, Lynch HT, Cullen KJ . (1995). Malignant breast epithelium selects for insulin-like growth factor II expression in breast stroma: evidence for paracrine function. Cancer Res 55: 2448–2454.

    CAS  PubMed  Google Scholar 

  • Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A et al. (2001). Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344: 783–792.

    Article  CAS  Google Scholar 

  • Surmacz E . (2000). Function of the IGF-I receptor in breast cancer. J Mam Gland Biol Neoplasia 5: 95–105.

    Article  CAS  Google Scholar 

  • Vesuna F, van DP, Chen JH, Raman V . (2008). Twist is a transcriptional repressor of E-cadherin gene expression in breast cancer. Biochem Biophys Res Commun 367: 235–241.

    Article  CAS  Google Scholar 

  • Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C et al. (2004). Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117: 927–939.

    Article  CAS  Google Scholar 

  • Yee D, Cullen KJ, Paik S, Perdue JF, Hampton B, Schwartz A et al. (1988). Insulin-like growth factor II mRNA expression in human breast cancer. Cancer Res 48: 6691–6696.

    CAS  PubMed  Google Scholar 

  • Yee D, Paik S, Lebovic GS, Marcus RR, Favoni RE, Cullen KJ et al. (1989). Analysis of insulin-like growth factor I gene expression in malignancy: evidence for a paracrine role in human breast cancer. Mol Endocrinol 3: 509–517.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Katrina Watson, Helen Coates and Michelle Ross for excellent technical assistance. This work was supported by operating grants from the Canadian Institutes of Health Research, the Canadian Breast Cancer Research Alliance, the Cancer Research Society as well as a New Investigator Salary Award from the Canadian Institutes of Health Research (RA Moorehead) and Ontario Graduate Scholarships (RA Jones and CI Campbell).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R A Moorehead.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, R., Campbell, C., Wood, G. et al. Reversibility and recurrence of IGF-IR-induced mammary tumors. Oncogene 28, 2152–2162 (2009). https://doi.org/10.1038/onc.2009.79

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.79

Keywords

This article is cited by

Search

Quick links