Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Epigenetic regulation of the human p53 gene promoter by the CTCF transcription factor in transformed cell lines

Abstract

Epigenetic silencing of tumor suppressor gene promoters has become a more frequent phenomenon in cancer than previously anticipated. In this study we addressed the mechanisms involved in the protection of the p53 tumor suppressor gene against epigenetic silencing in human transformed cell lines. We characterized a binding site for the CCCTC-binding factor (CTCF) in the human p53 gene promoter that contributes to its transcriptional expression, and has the ability to maintain this regulatory element in a local open chromatin configuration. In the absence of CTCF we observe the incorporation of repressive histone marks, such as H3K9me3, H3K27me3 and H4K20me3, in different sub-domains of the upstream regulatory sequence. This evidence suggests that CTCF protects the p53 gene promoter against repressive histone marks. Notably, no apparent direct correlation between repression and DNA hypermethylation has been detected. Together, we present evidence supporting the relevant role of CTCF in the epigenetic regulation of tumor suppressor genes and cancer. We propose that CTCF is a strategic component responsible for the maintenance and segregation of epigenetic traits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Amatya VJ, Naumann U, Weller M, Ohgaki H . (2005). TP53 promoter methylation in human gliomas. Acta Neuropathol 110: 178–184.

    Article  CAS  PubMed  Google Scholar 

  • Antequera F . (2003). Structure, function and evolution of CpG island promoters. Cell Mol Life Sci 60: 1647–1658.

    Article  CAS  PubMed  Google Scholar 

  • Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z et al. (2007). High-resolution profiling of histone methylations in the human genome. Cell 129: 823–837.

    Article  CAS  PubMed  Google Scholar 

  • Butcher DT, Rodenhiser DI . (2007). Epigenetic inactivation of BRCA1 is associated with aberrant expression of CTCF and DNA methyltransferase (DNMT3B) in some sporadic breast tumours. Eur J Cancer 43: 210–219.

    Article  CAS  PubMed  Google Scholar 

  • Clark SJ, Statham A, Stirzaker C, Molloy PL, Frommer M . (2006). DNA methylation: bisulphite modification and analysis. Nat Protocols 1: 2353–2364.

    Article  CAS  PubMed  Google Scholar 

  • De La Rosa-Velázquez IA, Rincón-Arano H, Benítez-Bribiesca L, Recillas-Targa F . (2007). Epigenetic regulation of the human retinoblastoma tumor suppressor gene promoter by CTCF. Cancer Res 67: 2577–2585.

    Article  PubMed  Google Scholar 

  • Docquier F, Kita GX, Farrar D, Jat P, O'Hare M, Chernukhin I et al. (2009). Decreased poly(ADP-ribosyl)ation of CTCF, a transcription factor, is associated with breast cancer phenotype and cell proliferation. Clin Cancer Res 15: 5762–5771.

    Article  CAS  PubMed  Google Scholar 

  • El-Kady A, Klenova E . (2005). Regulation of the transcription factor, CTCF, by phosphorylation with protein kinase CK2. FEBS Lett 579: 1424–1434.

    Article  CAS  PubMed  Google Scholar 

  • Escamilla-Del-Arenal M, Recillas-Targa F . (2008). GATA-1 modulates the chromatin structure and activity of the chicken α-globin 3′ enhancer. Mol Cell Biol 28: 575–586.

    Article  CAS  PubMed  Google Scholar 

  • Filippova G . (2008). Genetics and epigenetics of the multifunctional protein CTCF. Curr Top Dev Biol 80: 337–360.

    Article  CAS  PubMed  Google Scholar 

  • Guelen L, Pagie L, Brasset E, Meuleman W, Faza MB, Talhout W et al. (2008). Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453: 948–951.

    Article  CAS  PubMed  Google Scholar 

  • Hong JA, Kang Y, Abdullaev Z, Flanagan PT, Pack SD, Fischette MR et al. (2005). Reciprocal binding of CTCF and BORIS to the NY-ESO-1 promoter coincides with derepression of this cancer-testis gene in lung cancer cells. Cancer Res 65: 7763–7774.

    Article  CAS  PubMed  Google Scholar 

  • Ishihara K, Oshimura M, Nakao M . (2006). CTCF-dependent chromatin insulator is linked to epigenetic remodeling. Mol Cell 23: 733–742.

    Article  CAS  PubMed  Google Scholar 

  • Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P et al. (2009). The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 41: 178–186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Issa J-P . (2004). CpG island methylator phenotype in cancer. Nat Rev Cancer 4: 988–993.

    Article  CAS  PubMed  Google Scholar 

  • Jelinic P, Stehle JC, Shaw P . (2006). The testis-specific factor CTCFL cooperates with the protein methyltransferase PRMT7 in H19 imprinting control region methylation. PLoS Biol 4: e355.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones PA, Baylin SB . (2007). The epigenomics of cancer. Cell 128: 683–692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang JH, Kim SJ, Noh DY, Park IA, Choe KJ, Yoo OJ et al. (2001). Methylation in the p53 promoter is a supplementary route to breast carcinogenesis: correlation between CpG methylation in the p53 promoter and the mutation of the p53 gene in the progression from ductal carcinoma in situ to invasive ductal carcinoma. Lab Invest 81: 573–579.

    Article  CAS  PubMed  Google Scholar 

  • Kim TH, Abdullaev ZK, Smith AD, Ching KA, Loukinov DI, Green RD et al. (2007). Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome. Cell 128: 1231–1245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klenova EM, Morse III HC, Ohlsson R, Lobanenkov VV . (2002). The novel BORIS+CTCF gene family is uniquely involved in the epigenetics of normal biology and cancer. Semin Cancer Biol 12: 399–414.

    Article  CAS  PubMed  Google Scholar 

  • Kondo Y, Shen L, Cheng AS, Ahmed S, Boumber Y, Charo C et al. (2008). Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation. Nat Genet 40: 741–750.

    Article  CAS  PubMed  Google Scholar 

  • Le MT, Teh C, Shyh-Chang N, Xie H, Zhou B, Korzh V et al. (2009). MicroRNA-125b is a novel negative regulator of p53. Genes Dev 23: 862–876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loukinov DI, Pugacheva E, Vatolin S, Pack SD, Moon H, Chernukhin I et al. (2002). BORIS, a novel male germ-line protein associated with epigenetic reprogramming events, shares the same 11-zinc-finger domain with CTCF, the insulator protein involved in reading imprinting marks in the soma. Proc Natl Acad Sci USA 99: 6806–6911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahmoudi S, Henriksson S, Corcoran M, Méndez-Vidal C, Wiman KG, Farnebo M . (2009). Wrap53, a natural p53 antisense transcript required for p53 induction upon DNA damage. Mol Cell 33: 462–471.

    Article  CAS  PubMed  Google Scholar 

  • McGarvey KM, Fahrner JA, Greene E, Martens J, Jenuwein T, Baylin SB . (2006). Silenced tumor suppressor genes reactivated by DNA demethylation do not return to a fully euchromatic chromatin state. Cancer Res 66: 3541–3549.

    Article  CAS  PubMed  Google Scholar 

  • Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A et al. (2008). Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454: 766–770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen P, Cui H, Bisht KS, Sun L, Patel K, Lee RS et al. (2008). CTCFL/BORIS is a methylation-independent DNA-binding protein that preferentially binds to the paternal H19 differentially methylated region. Cancer Res 68: 5546–5551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pogribny IP, Pogribna M, Christman JK, James SJ . (2000). Single-site methylation within the p53 promoter region reduces gene expression in a reporter gene construct: possible in vivo relevance during tumorigenesis. Cancer Res 60: 588–594.

    CAS  PubMed  Google Scholar 

  • Recillas-Targa F, De La Rosa-Velázquez IA, Soto-Reyes E, Benítez-Bribiesca L . (2006). Epigenetic boundaries of tumour suppressor gene promoters: the CTCF connection and its role in carcinogenesis. J Cell Mol Med 10: 554–568.

    Article  CAS  PubMed  Google Scholar 

  • Sawado T, Igarashi K, Groudine M . (2001). Activation of β-major globin gene transcription is associated with recruitment of NF-E2 to the β-globin LCR and gene promoter. Proc Natl Acad Sci USA 98: 10226–10231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schreiber E, Matthias P, Müller MM, Schaffner W . (1989). Rapid detection of octamer binding proteins with ‘mini extracts’, prepared from a small number of cells. Nucl Acids Res 17: 6419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schotta G, Lachner M, Sarma K, Ebert A, Sengupta R, Reuter G et al. (2004). A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev 18: 1251–1262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su CH, Shann YJ, Hsu MT . (2009). p53 chromatin epigenetic domain organization and p53 transcription. Mol Cell Biol 29: 93–103.

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Huang L, Nguyen P, Bisht KS, Bar-Sela G, Ho AS et al. (2008). DNA methyltransferase 1 and 3B activate BAG-1 expression via recruitment of CTCFL/BORIS and modulation of promoter histone methylation. Cancer Res 68: 2726–2735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valadez-Graham V, Razin SV, Recillas-Targa F . (2004). CTCF-dependent enhancer blockers at the upstream region of the chicken α-globin gene domain. Nucleic Acids Res 32: 1354–1362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vazquez A, Bond EE, Levine AJ, Bond GL . (2008). The genetics of the p53 pathway, apoptosis and cancer therapy. Nat Rev Drug Discov 7: 979–987.

    Article  CAS  PubMed  Google Scholar 

  • Vousden KH, Prives C . (2009). Blinded by the light: the growing complexity of p53. Cell 137: 413–431.

    Article  CAS  PubMed  Google Scholar 

  • Yu W, Ginjala V, Pant V, Chernukhin I, Whitehead J, Docquier F et al. (2004). Poly(ADP-ribosyl)ation regulates CTCF-dependent chromatin insulation. Nat Genet 36: 1105–1110.

    Article  CAS  PubMed  Google Scholar 

  • Weber M, Hellmann I, Stadler MB, Ramos L, Pääbo S, Rebhan M et al. (2007). Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet 39: 457–466.

    Article  CAS  PubMed  Google Scholar 

  • Williams A, Flavell RA . (2008). The role of CTCF in regulating nuclear organization. J Exp Med 205: 747–750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witcher M, Emerson BM . (2009). Epigenetic silencing of the p16INK4a tumor suppressor is associated with loss of CTCF binding and a chromatin boundary. Mol Cell 34: 271–284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Inti Alberto de la Rosa-Velázquez, Catherine Farrell, Mayra Furlan-Magaril, Francisco Antequera, Abrahan Hernández-Hernández, Martín Escamilla-del-Arenal and Héctor Rincón-Arano for suggestions and constant scientific discussions. We are particularly indebted with the excellent technical assistance of Georgina Guerrero Avendaño, members of the Félix Recillas-Targa laboratory, Dr JA García-Saínz and the Instituto de Fisiología Celular, UNAM. We thank L Ongay, G Codiz and M Mora from the Unidad de Biología Molecular, IFC-UNAM, for DNA sequencing. This work was supported by the Dirección General de Asuntos del Personal Académico-Universidad Nacional Autónoma de México (IN209403 and IN214407), Consejo Nacional de Ciencia y Tecnología (CONACyT: 42653-Q and 58767) and Fundación Miguel Alemán, AC. E Soto-Reyes is supported by a PhD fellowship from CONACyT (181389) and Dirección General de estudios de Posgrado-Universidad Nacional Autónoma de México (DGEP). Additional support was provided by the PhD Graduate Program of Doctorado en Ciencias Biomédicas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Recillas-Targa.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soto-Reyes, E., Recillas-Targa, F. Epigenetic regulation of the human p53 gene promoter by the CTCF transcription factor in transformed cell lines. Oncogene 29, 2217–2227 (2010). https://doi.org/10.1038/onc.2009.509

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.509

Keywords

This article is cited by

Search

Quick links