Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Complete deletion of Apc results in severe polyposis in mice

Abstract

The adenomatous polyposis coli (APC) gene product is mutated in the vast majority of human colorectal cancers. APC negatively regulates the WNT pathway by aiding in the degradation of β-catenin, which is the transcription factor activated downstream of WNT signaling. APC mutations result in β-catenin stabilization and constitutive WNT pathway activation, leading to aberrant cellular proliferation. APC mutations associated with colorectal cancer commonly fall in a region of the gene termed the mutation cluster region and result in expression of an N-terminal fragment of the APC protein. Biochemical and molecular studies have revealed localization of APC/Apc to different sub-cellular compartments and various proteins outside of the WNT pathway that associate with truncated APC/Apc. These observations and genotype–phenotype correlations have led to the suggestion that truncated APC bears neomorphic and/or dominant-negative function that support tumor development. To analyze this possibility, we have generated a novel allele of Apc in the mouse that yields complete loss of Apc protein. Our studies reveal that whole-gene deletion of Apc results in more rapid tumor development than the APC multiple intestinal neoplasia (ApcMin) truncation. Furthermore, we found that adenomas bearing truncated Apc had increased β-catenin activity when compared with tumors lacking Apc protein, which could lead to context-dependent inhibition of tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Albuquerque C, Breukel C, van der Luijt R, Fidalgo P, Lage P, Slors FJM et al. (2002). The ‘just-right’ signaling model: APC somatic mutations are selected based on a specific level of activation of the beta-catenin signaling cascade. Hum Mol Genet 11: 1549–1560.

    Article  CAS  Google Scholar 

  • Aoki K, Taketo M . (2007). Adenomatous polyposis coli (APC): a multi-functional tumor suppressor gene. J Cell Sci 120: 3327–3335.

    Article  CAS  Google Scholar 

  • Clevers H . (2006). Wnt/beta-catenin signaling in development and disease. Cell 127: 469–480.

    Article  CAS  Google Scholar 

  • Colnot S, Niwa-Kawakita M, Hamard G, Godard C, Le Plenier S, Houbron C et al. (2004). Colorectal cancers in a new mouse model of familial adenomatous polyposis: influence of genetic and environmental modifiers. Lab Invest 84: 1619–1630.

    Article  CAS  Google Scholar 

  • Courtois-Cox S, Jones SL, Cichowski K . (2008). Many roads lead to oncogene-induced senescence. Oncogene 27: 2801–2809.

    Article  CAS  Google Scholar 

  • Damalas A, Kahan S, Shtutman M, Ben-Ze'ev A, Oren M . (2001). Deregulated beta-catenin induces a p53- and ARF-dependent growth arrest and cooperates with Ras in transformation. EMBOJ 20: 4912–4922.

    Article  CAS  Google Scholar 

  • de la Chapelle A . (2004). Genetic predisposition to colorectal cancer. Nat Rev Cancer 4: 769–780.

    Article  CAS  Google Scholar 

  • el Marjou F, Janssen KP, Chang BH, Li M, Hindie V, Chan L et al. (2004). Tissue-specific and inducible Cre-mediated recombination in the gut epithelium. Genesis 39: 186–193.

    Article  CAS  Google Scholar 

  • Fodde R, Smits R . (2001). Disease model: familial adenomatous polyposis. Trends Mol Med 7: 369–373.

    Article  CAS  Google Scholar 

  • Fodde R, Smits R, Clevers H . (2001). APC, signal transduction and genetic instability in colorectal cancer. Nat Rev Cancer 1: 55–67.

    Article  CAS  Google Scholar 

  • Gaspar C, Franken P, Molenaar L, Breukel C, Van Der Valk M, Smits R et al. (2009). A targeted constitutive mutation in the APC tumor suppressor gene underlies mammary but not intestinal tumorigenesis. PLoS Genet 5: e1000547.

    Article  Google Scholar 

  • Gherzi R, Trabucchi M, Ponassi M, Ruggiero T, Corte G, Moroni C et al. (2007). The RNA-binding protein KSRP promotes decay of beta-catenin mRNA and is inactivated by PI3K-AKT signaling. PLoS Biol 5.

  • Giles R . (2003). Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta (BBA) Rev Cancer 1653: 1–24.

    Article  CAS  Google Scholar 

  • Haigis K, Hoff PD, White A, Shoemaker AR, Halberg RB, Dove W . (2004). Tumor regionality in the mouse intestine reflects the mechanism of loss of Apc function. Proc Natl Acad Sci USA 101: 9769–9773.

    Article  CAS  Google Scholar 

  • Haigis K, Kendall K, Wang Y, Cheung A, Haigis M, Glickman J et al. (2008). Differential effects of oncogenic K-Ras and N-Ras on proliferation, differentiation and tumor progression in the colon. Nat Genet 40: 600–608.

    Article  CAS  Google Scholar 

  • Harada N, Tamai Y, Ishikawa T, Sauer B, Takaku K, Oshima M et al. (1999). Intestinal polyposis in mice with a dominant stable mutation of the beta-catenin gene. EMBOJ 18: 5931–5942.

    Article  CAS  Google Scholar 

  • Herrera L, Kakati S, Gibas L, Pietrzak E, Sandberg AA . (1986). Gardner syndrome in a man with an interstitial deletion of 5q. Am J Med Genet 25: 473–476.

    Article  CAS  Google Scholar 

  • Jho EH, Zhang T, Domon C, Joo CK, Freund JN, Costantini F . (2002). Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol 22: 1172–1183.

    Article  CAS  Google Scholar 

  • Kinzler KW, Vogelstein B . (1996). Lessons from hereditary colorectal cancer. Cell 87: 159–170.

    Article  CAS  Google Scholar 

  • Lamlum H, Ilyas M, Rowan A, Clark S, Johnson V, Bell J et al. (1999). The type of somatic mutation at APC in familial adenomatous polyposis is determined by the site of the germline mutation: a new facet to Knudson's ‘two-hit’ hypothesis. Nat Med 5: 1071–1075.

    Article  CAS  Google Scholar 

  • Mccartney B, Nathke I . (2008). Cell regulation by the Apc protein Apc as master regulator of epithelia. Curr Opin Cell Biol 20: 186–193.

    Article  CAS  Google Scholar 

  • Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B et al. (1997). Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275: 1787–1790.

    Article  CAS  Google Scholar 

  • Nathke I . (2004). APC at a glance. J Cell Sci. 117: 4873–4875.

    Article  Google Scholar 

  • Nieuwenhuis MH, Vasen HF . (2007). Correlations between mutation site in APC and phenotype of familial adenomatous polyposis (FAP): a review of the literature. Crit Rev Oncol Hematol 61: 153–161.

    Article  CAS  Google Scholar 

  • Oshima M, Oshima H, Kitagawa K, Kobayashi M, Itakura C, Taketo M . (1995). Loss of Apc heterozygosity and abnormal tissue building in nascent intestinal polyps in mice carrying a truncated Apc gene. Proc Natl Acad Sci USA 92: 4482–4486.

    Article  CAS  Google Scholar 

  • Pollard P, Deheragoda M, Segditsas S, Lewis A, Rowan A, Howarth K et al. (2009). The Apc 1322T mouse develops severe polyposis associated with submaximal nuclear beta-catenin expression. Gastroenterology 136: 2204–2213 e1–13.

    Article  CAS  Google Scholar 

  • Sieber OM, Lamlum H, Crabtree MD, Rowan AJ, Barclay E, Lipton L et al. (2002). Whole-gene APC deletions cause classical familial adenomatous polyposis, but not attenuated polyposis or ‘multiple’ colorectal adenomas. Proc Natl Acad Sci USA 99: 2954–2958.

    Article  CAS  Google Scholar 

  • Smits R, Kielman MF, Breukel C, Zurcher C, Neufeld K, Jagmohan-Changur S et al. (1999). Apc1638T: a mouse model delineating critical domains of the adenomatous polyposis coli protein involved in tumorigenesis and development. Genes Dev 13: 1309–1321.

    Article  CAS  Google Scholar 

  • Soravia C, Berk T, Madlensky L, Mitri A, Cheng H, Gallinger S et al. (1998). Genotype-phenotype correlations in attenuated adenomatous polyposis coli. Am J Hum Genet 62: 1290–1301.

    Article  CAS  Google Scholar 

  • Su LK, Kinzler KW, Vogelstein B, Preisinger AC, Moser AR, Luongo C et al. (1992). Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science 256: 668–670.

    Article  CAS  Google Scholar 

  • Takacs C, Baird J, Hughes E, Kent S, Benchabane H, Paik R et al. (2008). Dual positive and negative regulation of wingless signaling by adenomatous polyposis coli. Science 319: 333–336.

    Article  CAS  Google Scholar 

  • Tallquist MD, Soriano P . (2000). Epiblast-restricted Cre expression in MORE mice: a tool to distinguish embryonic vs. extra-embryonic gene function. Genesis 26: 113–115.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Jacks labs, Keara Lane in particular, for experimental advice and assistance. This work was supported by the Howard Hughes Medical Institute and partially by the Cancer Center Support (core) Grant P30-CA14051 from the National Cancer Institute. TJ is a Howard Hughes Investigator and a Daniel K Ludwig Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Jacks.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheung, A., Carter, A., Kostova, K. et al. Complete deletion of Apc results in severe polyposis in mice. Oncogene 29, 1857–1864 (2010). https://doi.org/10.1038/onc.2009.457

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.457

Keywords

This article is cited by

Search

Quick links