Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

egl-1: a key activator of apoptotic cell death in C. elegans

Abstract

Since the discovery of mammalian BIK and BAD in 1995, BH3-only proteins have emerged as key activators of apoptotic cell death in animals as diverse as the nematode, Caenorhabditis elegans, and humans. BH3-only proteins have also emerged as integrators of cell-death signals that determine the life-versus-death decision and that transduce this decision to the central apoptotic machinery through their physical interaction with ‘core’ BCL-2 family members, such as BCL-2 or BCL-XL. Currently, eight BH3-only proteins have been identified and characterized in mammals, and there is evidence of functional overlap between them. In contrast, only two BH3-only proteins have so far been identified and characterized in C. elegans, EGL-1 and CED-13, and there seems to be only limited functional overlap between them. Combined with the powerful genetic tools available for the analysis of apoptosis in C. elegans, and the ability to study apoptosis at single-cell resolution in this organism, the absence of extensive functional redundancy makes C. elegans an ideal model for studies on BH3-only proteins. In this study, we will review our current understanding of the role and regulation of EGL-1. We will also briefly summarize studies on CED-13, which was identified more recently.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Anderson P . (1995). Mutagenesis. Methods Cell Biol 48: 31–58.

    Article  CAS  PubMed  Google Scholar 

  • Boyd JM, Gallo GJ, Elangovan B, Houghton AB, Malstrom S, Avery BJ et al. (1995). Bik, a novel death-inducing protein shares a distinct sequence motif with Bcl-2 family proteins and interacts with viral and cellular survival-promoting proteins. Oncogene 11: 1921–1928.

    CAS  PubMed  Google Scholar 

  • Chen F, Hersh BM, Conradt B, Zhou Z, Riemer D, Gruenbaum Y et al. (2000). Translocation of C. elegans CED-4 to nuclear membranes during programmed cell death. Science 287: 1485–1489.

    Article  CAS  PubMed  Google Scholar 

  • Chinnaiyan AM, Chaudhary D, O’Rourke K, Koonin EV, Dixit VM . (1997a). Role of CED-4 in the activation of CED-3. Nature 388: 728–729.

    CAS  PubMed  Google Scholar 

  • Chinnaiyan AM, O’Rourke K, Lane BR, Dixit VM . (1997b). Interaction of CED-4 with CED-3 and CED-9: a molecular framework for cell death. Science 275: 1122–1126.

    Article  CAS  PubMed  Google Scholar 

  • Conradt B, Horvitz HR . (1998). The C. elegans protein EGL-1 is required for programmed cell death and interacts with the Bcl-2-like protein CED-9. Cell 93: 519–529.

    Article  CAS  PubMed  Google Scholar 

  • Conradt B, Horvitz HR . (1999). The TRA-1A sex determination protein of C. elegans regulates sexually dimorphic cell deaths by repressing the egl-1 cell death activator gene. Cell 98: 317–327.

    Article  CAS  PubMed  Google Scholar 

  • Conradt B, Xue D . (2005). Programmed cell death. WormBook, ed. The C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.32.1, http://www.wormbook.org.

  • Consortium, The C. elegans Genome (1998). Genome sequence of the nematode C. elegans: a platform for investigating biology. The C. elegans Sequencing Consortium. Science 282: 2012–2018.

    Article  Google Scholar 

  • del Peso L, Gonzalez VM, Inohara N, Ellis RE, Nunez G . (2000). Disruption of the CED-9.CED-4 complex by EGL-1 is a critical step for programmed cell death in Caenorhabditis elegans. J Biol Chem 275: 27205–27211.

    Article  CAS  PubMed  Google Scholar 

  • del Peso L, Gonzalez VM, Nunez G . (1998). Caenorhabditis elegans EGL-1 disrupts the interaction of CED-9 with CED-4 and promotes CED-3 activation. J Biol Chem 273: 33495–33500.

    Article  CAS  PubMed  Google Scholar 

  • Delivani P, Adrain C, Taylor RC, Duriez PJ, Martin SJ . (2006). Role for CED-9 and Egl-1 as regulators of mitochondrial fission and fusion dynamics. Mol Cell 21: 761–773.

    Article  CAS  PubMed  Google Scholar 

  • Derry WB, Putzke AP, Rothman JH . (2001). Caenorhabditis elegans p53: role in apoptosis, meiosis, and stress resistance. Science 294: 591–595.

    Article  CAS  PubMed  Google Scholar 

  • Desagher S, Martinou JC . (2000). Mitochondria as the central control point of apoptosis. Trends Cell Biol 10: 369–377.

    Article  CAS  PubMed  Google Scholar 

  • Doonan R, Hatzold J, Raut S, Conradt B, Alfonso A . (2008). HLH-3 is a C. elegans Achaete/Scute protein required for differentiation of the hermaphrodite-specific motor neurons. Mech Dev 125: 883–893.

    Article  CAS  PubMed  Google Scholar 

  • Ellis HM, Horvitz HR . (1986). Genetic control of programmed cell death in the nematode C. elegans. Cell 44: 817–829.

    Article  CAS  PubMed  Google Scholar 

  • Ellis RE, Horvitz HR . (1991). Two C. elegans genes control the programmed deaths of specific cells in the pharynx. Development 112: 591–603.

    Article  CAS  PubMed  Google Scholar 

  • Frank S, Gaume B, Bergmann-Leitner ES, Leitner WW, Robert EG, Catez F et al. (2001). The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell 1: 515–525.

    Article  CAS  PubMed  Google Scholar 

  • Gartner A, Boag PR, Blackwell TK . (2008). Germline survival and apoptosis. WormBook, ed. The C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.145.1, http://www.wormbook.org.

  • Grote P, Conradt B . (2006). The PLZF-like protein TRA-4 cooperates with the Gli-like transcription factor TRA-1 to promote female development in C. elegans. Dev Cell 11: 561–573.

    Article  CAS  PubMed  Google Scholar 

  • Gumienny TL, Lambie E, Hartwieg E, Horvitz HR, Hengartner MO . (1999). Genetic control of programmed cell death in the Caenorhabditis elegans hermaphrodite germline. Development 126: 1011–1022.

    Article  CAS  PubMed  Google Scholar 

  • Han J, Flemington C, Houghton AB, Gu Z, Zambetti GP, Lutz RJ et al. (2001). Expression of bbc3, a pro-apoptotic BH3-only gene, is regulated by diverse cell death and survival signals. Proc Natl Acad Sci USA 98: 11318–11323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han J, Sabbatini P, White E . (1996). Induction of apoptosis by human Nbk/Bik, a BH3-containing protein that interacts with E1B 19K. Mol Cell Biol 16: 5857–5864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison MM, Ceol CJ, Lu X, Horvitz HR . (2006). Some C. elegans class B synthetic multivulva proteins encode a conserved LIN-35 Rb-containing complex distinct from a NuRD-like complex. Proc Natl Acad Sci USA 103: 16782–16787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatzold J, Conradt B . (2008). Control of apoptosis by asymmetric cell division. PLoS Biol 6: e84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hengartner MO, Ellis RE, Horvitz HR . (1992). Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. Nature 356: 494–499.

    Article  CAS  PubMed  Google Scholar 

  • Hengartner MO, Horvitz HR . (1994a). Activation of C. elegans cell death protein CED-9 by an amino-acid substitution in a domain conserved in Bcl-2. Nature 369: 318–320.

    Article  CAS  PubMed  Google Scholar 

  • Hengartner MO, Horvitz HR . (1994b). C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2. Cell 76: 665–676.

    Article  CAS  PubMed  Google Scholar 

  • Herzig S, Martinou JC . (2008). Mitochondrial dynamics: to be in good shape to survive. Curr Mol Med 8: 131–137.

    Article  CAS  PubMed  Google Scholar 

  • Hofmann ER, Milstein S, Boulton SJ, Ye M, Hofmann JJ, Stergiou L et al. (2002). Caenorhabditis elegans HUS-1 Is a DNA damage checkpoint protein required for genome stability and EGL-1-mediated apoptosis. Curr Biol 12: 1908–1918.

    Article  CAS  PubMed  Google Scholar 

  • Horvitz HR . (2003). Nobel lecture. Worms, life and death. Biosci Rep 23: 239–303.

    Article  CAS  PubMed  Google Scholar 

  • Hunger SP, Ohyashiki K, Toyama K, Cleary ML . (1992). Hlf, a novel hepatic bZIP protein, shows altered DNA-binding properties following fusion to E2A in t(17;19) acute lymphoblastic leukemia. Genes Dev 6: 1608–1620.

    Article  CAS  PubMed  Google Scholar 

  • Inaba T, Inukai T, Yoshihara T, Seyschab H, Ashmun RA, Canman CE et al. (1996). Reversal of apoptosis by the leukaemia-associated E2A-HLF chimaeric transcription factor. Nature 382: 541–544.

    Article  CAS  PubMed  Google Scholar 

  • Inaba T, Roberts WM, Shapiro LH, Jolly KW, Raimondi SC, Smith SD et al. (1992). Fusion of the leucine zipper gene HLF to the E2A gene in human acute B-lineage leukemia. Science 257: 531–534.

    Article  CAS  PubMed  Google Scholar 

  • Inohara N, Ding L, Chen S, Nunez G . (1997). Harakiri, a novel regulator of cell death, encodes a protein that activates apoptosis and interacts selectively with survival-promoting proteins Bcl-2 and Bcl-X(L). EMBO J 16: 1686–1694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inukai T, Inoue A, Kurosawa H, Goi K, Shinjyo T, Ozawa K et al. (1999). SLUG, a ces-1-related zinc finger transcription factor gene with antiapoptotic activity, is a downstream target of the E2A–HLF oncoprotein. Mol Cell 4: 343–352.

    Article  CAS  PubMed  Google Scholar 

  • Irmler M, Hofmann K, Vaux D, Tschopp J . (1997). Direct physical interaction between the Caenorhabditis elegans ‘death proteins’ CED-3 and CED-4. FEBS Lett 406: 189–190.

    Article  CAS  PubMed  Google Scholar 

  • Jagasia R, Grote P, Westermann B, Conradt B . (2005). DRP-1-mediated mitochondrial fragmentation during EGL-1-induced cell death in C. elegans. Nature 433: 754–760.

    Article  CAS  PubMed  Google Scholar 

  • Kamps MP, Murre C, Sun XH, Baltimore D . (1990). A new homeobox gene contributes the DNA binding domain of the t(1;19) translocation protein in pre-B ALL. Cell 60: 547–555.

    Article  CAS  PubMed  Google Scholar 

  • Karbowski M, Norris KL, Cleland MM, Jeong S-Y, Youle RJ . (2006). Role of Bax and Bak in mitochondrial morphogenesis. Nature 443: 658–662.

    Article  CAS  PubMed  Google Scholar 

  • Kenyon C . (1986). A gene involved in the development of the posterior body region of C. elegans. Cell 46: 477–487.

    Article  CAS  PubMed  Google Scholar 

  • Krause M, Park M, Zhang JM, Yuan J, Harfe B, Xu SQ et al. (1997). A C. elegans E/Daughterless bHLH protein marks neuronal but not striated muscle development. Development 124: 2179–2189.

    Article  CAS  PubMed  Google Scholar 

  • Labi V, Erlacher M, Kiessling S, Villunger A . (2006). BH3-only proteins in cell death initiation, malignant disease and anticancer therapy. Cell Death Differ 13: 1325–1338.

    Article  CAS  PubMed  Google Scholar 

  • Labrousse AM, Zappaterra MD, Rube DA, van der Bliek AM . (1999). C. elegans dynamin-related protein DRP-1 controls severing of the mitochondrial outer membrane. Mol Cell 4: 815–826.

    Article  CAS  PubMed  Google Scholar 

  • Large EE, Mathies LD . (2007). Chromatin regulation and sex determination in Caenorhabditis elegans. Trends Genet 23: 314–317.

    Article  CAS  PubMed  Google Scholar 

  • Li S, Price SM, Cahill H, Ryugo DK, Shen MM, Xiang M . (2002). Hearing loss caused by progressive degeneration of cochlear hair cells in mice deficient for the Barhl1 homeobox gene. Development 129: 3523–3532.

    Article  CAS  PubMed  Google Scholar 

  • Li S, Qiu F, Xu A, Price SM, Xiang M . (2004). Barhl1 regulates migration and survival of cerebellar granule cells by controlling expression of the neurotrophin-3 gene. J Neurosci 24: 3104–3114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Xiang M . (2006). Barhl1 is required for maintenance of a large population of neurons in the zonal layer of the superior colliculus. Dev Dyn 235: 2260–2265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Strauss TJ, Potts MB, Cameron S . (2006). Direct regulation of egl-1 and of programmed cell death by the Hox protein MAB-5 and by CEH-20, a C. elegans homolog of Pbx1. Development 133: 641–650.

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Fire A . (2000). Overlapping roles of two Hox genes and the exd ortholog ceh-20 in diversification of the C. elegans postembryonic mesoderm. Development 127: 5179–5190.

    Article  CAS  PubMed  Google Scholar 

  • Maiuri MC, Le Toumelin G, Criollo A, Rain JC, Gautier F, Juin P et al. (2007). Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. EMBO J 26: 2527–2539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maurer CW, Chiorazzi M, Shaham S . (2007). Timing of the onset of a developmental cell death is controlled by transcriptional induction of the C. elegans ced-3 caspase-encoding gene. Development 134: 1357–1368.

    Article  CAS  PubMed  Google Scholar 

  • Metzstein MM, Hengartner MO, Tsung N, Ellis RE, Horvitz HR . (1996). Transcriptional regulator of programmed cell death encoded by Caenorhabditis elegans gene ces-2. Nature 382: 545–547.

    Article  CAS  PubMed  Google Scholar 

  • Metzstein MM, Horvitz HR . (1999). The C. elegans cell death specification gene ces-1 encodes a snail family zinc finger protein. Mol Cell 4: 309–319.

    Article  CAS  PubMed  Google Scholar 

  • Nakano K, Vousden KH . (2001). PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 7: 683–694.

    Article  CAS  PubMed  Google Scholar 

  • Nourse J, Mellentin JD, Galili N, Wilkinson J, Stanbridge E, Smith SD et al. (1990). Chromosomal translocation t(1;19) results in synthesis of a homeobox fusion mRNA that codes for a potential chimeric transcription factor. Cell 60: 535–545.

    Article  CAS  PubMed  Google Scholar 

  • Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T et al. (2000). Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288: 1053–1058.

    Article  CAS  PubMed  Google Scholar 

  • Offner N, Duval N, Jamrich M, Durand B . (2005). The pro-apoptotic activity of a vertebrate Bar-like homeobox gene plays a key role in patterning the Xenopus neural plate by limiting the number of chordin- and shh-expressing cells. Development 132: 1807–1818.

    Article  CAS  PubMed  Google Scholar 

  • Park D, Jia H, Rajakumar V, Chamberlin HM . (2006). Pax2/5/8 proteins promote cell survival in C. elegans. Development 133: 4193–4202.

    Article  CAS  PubMed  Google Scholar 

  • Peden E, Kimberly E, Gengyo-Ando K, Mitani S, Xue D . (2007). Control of sex-specific apoptosis in C. elegans by the BarH homeodomain protein CEH-30 and the transcriptional repressor UNC-37/Groucho. Genes Dev 21: 3195–3207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pietsch EC, Sykes SM, McMahon SB, Murphy ME . (2008). The p53 family and programmed cell death. Oncogene 27: 6507–6521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddien PW, Andersen EC, Huang MC, Horvitz HR . (2007). DPL-1 DP, LIN-35 Rb and EFL-1 E2F act with the MCD-1 zinc-finger protein to promote programmed cell death in Caenorhabditis elegans. Genetics 175: 1719–1733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rolland S, Conradt B . (2006). The role of mitochondria in apoptosis induction in Caenorhabditis elegans: more than just innocent bystanders? Cell Death Differ 13: 1281–1286.

    Article  CAS  PubMed  Google Scholar 

  • Ruiz i Altaba A, Sanchez P, Dahmane N . (2002). Gli and hedgehog in cancer: tumours, embryos and stem cells. Nat Rev Cancer 2: 361–372.

    Article  CAS  PubMed  Google Scholar 

  • Schertel C, Conradt B . (2007). C. elegans orthologs of components of the RB tumor suppressor complex have distinct pro-apoptotic functions. Development 134: 3691–3701.

    Article  CAS  PubMed  Google Scholar 

  • Schumacher B, Hofmann K, Boulton S, Gartner A . (2001). The C. elegans homolog of the p53 tumor suppressor is required for DNA damage-induced apoptosis. Curr Biol 11: 1722–1727.

    Article  CAS  PubMed  Google Scholar 

  • Schumacher B, Schertel C, Wittenburg N, Tuck S, Mitani S, Gartner A et al. (2005). C. elegans ced-13 can promote apoptosis and is induced in response to DNA damage. Cell Death Differ 12: 153–161.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz HT, Horvitz HR . (2007). The C. elegans protein CEH-30 protects male-specific neurons from apoptosis independently of the Bcl-2 homolog CED-9. Genes Dev 21: 3181–3194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seshagiri S, Miller LK . (1997). Caenorhabditis elegans CED-4 stimulates CED-3 processing and CED-3-induced apoptosis. Curr Biol 7: 455–460.

    Article  CAS  PubMed  Google Scholar 

  • Shaham S, Horvitz HR . (1996). Developing Caenorhabditis elegans neurons may contain both cell-death protective and killer activities. Genes Dev 10: 578–591.

    Article  CAS  PubMed  Google Scholar 

  • Spector MS, Desnoyers S, Hoeppner DJ, Hengartner MO . (1997). Interaction between the C. elegans cell-death regulators CED-9 and CED-4. Nature 385: 653–656.

    Article  CAS  PubMed  Google Scholar 

  • Stergiou L, Doukoumetzidis K, Sendoel A, Hengartner MO . (2007). The nucleotide excision repair pathway is required for UV-C-induced apoptosis in Caenorhabditis elegans. Cell Death Differ 14: 1129–1138.

    Article  CAS  PubMed  Google Scholar 

  • Su H, Bidere N, Zheng L, Cubre A, Sakai K, Dale J et al. (2005). Requirement for caspase-8 in NF-kappaB activation by antigen receptor. Science 307: 1465–1468.

    Article  CAS  PubMed  Google Scholar 

  • Suen DF, Norris KL, Youle RJ . (2008). Mitochondrial dynamics and apoptosis. Genes Dev 22: 1577–1590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sulston JE, Horvitz HR . (1977). Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol 56: 110–156.

    Article  CAS  PubMed  Google Scholar 

  • Sulston JE, Schierenberg E, White JG, Thomson JN . (1983). The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100: 64–119.

    Article  CAS  PubMed  Google Scholar 

  • Thellmann M, Hatzold J, Conradt B . (2003). The Snail-like CES-1 protein of C. elegans can block the expression of the BH3-only cell-death activator gene egl-1 by antagonizing the function of bHLH proteins. Development 130: 4057–4071.

    Article  CAS  PubMed  Google Scholar 

  • Trent C, Tsung N, Horvitz HR . (1983). Egg-laying defective mutants of the nematode Caenorhabditis elegans. Genetics 104: 619–647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang K, Yin XM, Chao DT, Milliman CL, Korsmeyer SJ . (1996). BID: a novel BH3 domain-only death agonist. Genes Dev 10: 2859–2869.

    Article  CAS  PubMed  Google Scholar 

  • Woo M, Hakem R, Furlonger C, Hakem A, Duncan GS, Sasaki T et al. (2003). Caspase-3 regulates cell cycle in B cells: a consequence of substrate specificity. Nat Immunol 4: 1016–1022.

    Article  CAS  PubMed  Google Scholar 

  • Wu D, Wallen HD, Inohara N, Nunez G . (1997a). Interaction and regulation of the Caenorhabditis elegans death protease CED-3 by CED-4 and CED-9. J Biol Chem 272: 21449–21454.

    Article  CAS  PubMed  Google Scholar 

  • Wu D, Wallen HD, Nunez G . (1997b). Interaction and regulation of subcellular localization of CED-4 by CED-9. Science 275: 1126–1129.

    Article  CAS  PubMed  Google Scholar 

  • Wu WS, Heinrichs S, Xu D, Garrison SP, Zambetti GP, Adams JM et al. (2005). SLUG antagonizes p53-mediated apoptosis of hematopoietic progenitors by repressing puma. Cell 123: 641–653.

    Article  CAS  PubMed  Google Scholar 

  • Yan N, Chai J, Lee ES, Gu L, Liu Q, He J et al. (2005). Structure of the CED-4-CED-9 complex provides insights into programmed cell death in Caenorhabditis elegans. Nature 437: 831–837.

    Article  CAS  PubMed  Google Scholar 

  • Yan N, Gu L, Kokel D, Chai J, Li W, Han A et al. (2004). Structural, biochemical, and functional analyses of CED-9 recognition by the proapoptotic proteins EGL-1 and CED-4. Mol Cell 15: 999–1006.

    Article  CAS  PubMed  Google Scholar 

  • Yang E, Zha J, Jockel J, Boise LH, Thompson CB, Korsmeyer SJ . (1995). Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell 80: 285–291.

    Article  CAS  PubMed  Google Scholar 

  • Youle RJ, Strasser A . (2008). The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9: 47–59.

    Article  CAS  PubMed  Google Scholar 

  • Yuan J, Horvitz HR . (1992). The Caenorhabditis elegans cell death gene ced-4 encodes a novel protein and is expressed during the period of extensive programmed cell death. Development 116: 309–320.

    Article  CAS  PubMed  Google Scholar 

  • Yuan J, Shaham S, Ledoux S, Ellis HM, Horvitz HR . (1993). The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 75: 641–652.

    Article  CAS  PubMed  Google Scholar 

  • Zarkower D . (2006). Somatic sex determination. WormBook, ed. The C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.84.1, http://www.wormbook.org.

  • Zarkower D, Hodgkin J . (1993). Zinc fingers in sex determination: only one of the two C. elegans Tra-1 proteins binds DNA in vitro. Nucleic Acids Res 21: 3691–3698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Angelika Böttger, Eric Lambie and Scott Gerber for comments on the paper and members of the Conradt laboratory for many stimulating discussions. BC is grateful to Bob Horvitz for pointing her towards ‘the egl-1 project’ and for his encouragement and support, which was critical for the identification of n3082 and for the cloning of egl-1. Research in the Conradt laboratory is funded by the NIH (GM069950, GM076651) and ACS (RSG-06-110-01-CCG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Conradt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nehme, R., Conradt, B. egl-1: a key activator of apoptotic cell death in C. elegans. Oncogene 27 (Suppl 1), S30–S40 (2008). https://doi.org/10.1038/onc.2009.41

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.41

Keywords

This article is cited by

Search

Quick links