Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cooperativity of the MUC1 oncoprotein and STAT1 pathway in poor prognosis human breast cancer

Abstract

Signal transducer and activator of transcription 1 (STAT1) is activated in the inflammatory response to interferons. The MUC1 oncoprotein is overexpressed in human breast cancers. Analysis of genes differentially expressed in MUC1-transformed cells has identified a network linking MUC1 and STAT1 that is associated with cellular growth and inflammation. The results further show that the MUC1-C subunit associates with STAT1 in cells and the MUC1-C cytoplasmic domain binds directly to the STAT1 DNA-binding domain. The interaction between MUC1-C and STAT1 is inducible by IFNγ in non-malignant epithelial cells and constitutive in breast cancer cells. Moreover, the MUC1–STAT1 interaction contributes to the activation of STAT1 target genes, including MUC1 itself. Analysis of two independent databases showed that MUC1 and STAT1 are coexpressed in about 15% of primary human breast tumors. Coexpression of MUC1 and the STAT1 pathway was found to be significantly associated with decreased recurrence-free and overall survival. These findings indicate that (i) MUC1 and STAT1 function in an auto-inductive loop, and (ii) activation of both MUC1 and the STAT1 pathway in breast tumors confers a poor prognosis for patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Ahmad R, Raina D, Joshi MD, Kawano T, Kharbanda S, Kufe D . (2009). MUC1-C oncoprotein functions as a direct activator of the NF-kappaB p65 transcription factor. Cancer Res 69: 7013–7021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad R, Raina D, Trivedi V, Ren J, Rajabi H, Kharbanda S et al. (2007). MUC1 oncoprotein activates the IκB kinase β complex and constitutive NF-κB signaling. Nat Cell Biol 9: 1419–1427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chanrion M, Negre V, Fontaine H, Salvetat N, Bibeau F, Mac Grogan G et al. (2008). A gene expression signature that can predict the recurrence of tamoxifen-treated primary breast cancer. Clin Cancer Res 14: 1744–1752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darnell Jr JE, Kerr IM, Stark GR . (1994). Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264: 1415–1421.

    Article  CAS  PubMed  Google Scholar 

  • Deblandre GA, Marinx OP, Evans SS, Majjaj S, Leo O, Caput D et al. (1995). Expression cloning of an interferon-inducible 17-kDa membrane protein implicated in the control of cell growth. J Biol Chem 270: 23860–23866.

    Article  CAS  PubMed  Google Scholar 

  • Der SD, Zhou A, Williams BR, Silverman RH . (1998). Identification of genes differentially regulated by interferon alpha, beta, or gamma using oligonucleotide arrays. Proc Natl Acad Sci USA 95: 15623–15628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaemers IC, Vos HL, Volders HH, van der Valk SW, Hilkens J . (2001). A STAT-responsive element in the promoter of the episialin/MUC1 gene is involved in its overexpression in carcinoma cells. J Biol Chem 276: 6191–6199.

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Chen D, Liu D, Yin L, Kharbanda S, Kufe D . (2005). MUC1 oncoprotein blocks GSK3beta-mediated phosphorylation and degradation of beta-catenin. Cancer Res 65: 10413–10422.

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Ren J, Chen D, Li Y, Kharbanda S, Kufe D . (2003). MUC1 cytoplasmic domain coactivates Wnt target gene transcription and confers transformation. Cancer Biol Ther 2: 702–706.

    CAS  PubMed  Google Scholar 

  • Khodarev N, Pitroda S, Beckett M, MacDermed D, Huang L, Kufe D et al. (2009). MUC1-induced transcriptional programs associated with tumorigenesis predict outcome in breast and lung cancer. Cancer Res 69: 2833–2837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khodarev NN, Beckett M, Labay E, Darga T, Roizman B, Weichselbaum RR . (2004). STAT1 is overexpressed in tumors selected for radioresistance and confers protection from radiation in transduced sensitive cells. Proc Natl Acad Sci USA 101: 1714–1719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khodarev NN, Minn AJ, Efimova EV, Darga TE, Labay E, Beckett M et al. (2007). Signal transducer and activator of transcription 1 regulates both cytotoxic and prosurvival functions in tumor cells. Cancer Res 67: 9214–9220.

    Article  CAS  PubMed  Google Scholar 

  • Khodarev NN, Park J, Kataoka Y, Nodzenski E, Hellman S, Roizman B et al. (2003). Receiver operating characteristic analysis: a general tool for DNA array data filtration and performance estimation. Genomics 81: 202–209.

    Article  CAS  PubMed  Google Scholar 

  • Kimchi ET, Posner MC, Park JO, Darga TE, Kocherginsky M, Karrison T et al. (2005). Progression of Barrett's metaplasia to adenocarcinoma is associated with the suppression of the transcriptional programs of epidermal differentiation. Cancer Res 65: 3146–3154.

    Article  CAS  PubMed  Google Scholar 

  • Krämer OH, Baus D, Knauer SK, Stein S, Jäger E, Stauber RH et al. (2006). Acetylation of Stat1 modulates NF-kappaB activity. Genes Dev 20: 473–485.

    Article  PubMed  PubMed Central  Google Scholar 

  • Krämer OH, Knauer SK, Greiner G, Jandt E, Reichardt S, Gührs KH et al. (2009). A phosphorylation-acetylation switch regulates STAT1 signaling. Genes Dev 23: 223–235.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kufe D, Inghirami G, Abe M, Hayes D, Justi-Wheeler H, Schlom J . (1984). Differential reactivity of a novel monoclonal antibody (DF3) with human malignant versus benign breast tumors. Hybridoma 3: 223–232.

    Article  CAS  PubMed  Google Scholar 

  • Lagow EL, Carson DD . (2002). Synergistic stimulation of MUC1 expression in normal breast epithelia and breast cancer cells by interferon-gamma and tumor necrosis factor-alpha. J Cell Biochem 86: 759–772.

    Article  CAS  PubMed  Google Scholar 

  • Leng Y, Cao C, Ren J, Huang L, Chen D, Ito M et al. (2007). Nuclear import of the MUC1-C oncoprotein is mediated by nucleoporin Nup62. J Biol Chem 282: 19321–19330.

    Article  CAS  PubMed  Google Scholar 

  • Levy DE, Darnell Jr JE . (2002). Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol 3: 651–662.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Bharti A, Chen D, Gong J, Kufe D . (1998). Interaction of glycogen synthase kinase 3β with the DF3/MUC1 carcinoma-associated antigen and β-catenin. Mol Cell Biol 18: 7216–7224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Kuwahara H, Ren J, Wen G, Kufe D . (2001a). The c-Src tyrosine kinase regulates signaling of the human DF3/MUC1 carcinoma-associated antigen with GSK3β and β-catenin. J Biol Chem 276: 6061–6064.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Liu D, Chen D, Kharbanda S, Kufe D . (2003). Human DF3/MUC1 carcinoma-associated protein functions as an oncogene. Oncogene 22: 6107–6110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Ren J, Yu W-H, Li G, Kuwahara H, Yin L et al. (2001b). The EGF receptor regulates interaction of the human DF3/MUC1 carcinoma antigen with c-Src and β-catenin. J Biol Chem 276: 35239–35242.

    Article  CAS  PubMed  Google Scholar 

  • Ligtenberg MJ, Kruijshaar L, Buijs F, van Meijer M, Litvinov SV, Hilkens J . (1992). Cell-associated episialin is a complex containing two proteins derived from a common precursor. J Biol Chem 267: 6171–6177.

    CAS  PubMed  Google Scholar 

  • Loi S, Haibe-Kains B, Desmedt C, Lallemand F, Tutt AM, Gillet C et al. (2007). Definition of clinically distinct molecular subtypes in estrogen receptor-positive breast carcinomas through genomic grade. J Clin Oncol 25: 1239–1246.

    Article  CAS  PubMed  Google Scholar 

  • Macao B, Johansson DG, Hansson GC, Hard T . (2006). Autoproteolysis coupled to protein folding in the SEA domain of the membrane-bound MUC1 mucin. Nat Struct Mol Biol 13: 71–76.

    Article  CAS  PubMed  Google Scholar 

  • McBride KM, McDonald C, Reich NC . (2000). Nuclear export signal located within the DNA-binding domain of the STAT1 transcription factor. EMBO J 19: 6196–6206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer T, Marg A, Lemke P, Wiesner B, Vinkemeier U . (2003). DNA binding controls inactivation and nuclear accumulation of the transcription factor STAT1. Genes Dev 17: 1992–2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pitroda S, Khodarev N, Beckett M, Kufe D, Weichselbaum R . (2009). MUC1-induced alterations in a lipid metabolic gene network predict response of human breast cancers to tamoxifen treatment. Proc Natl Acad Sci USA 106: 5837–5841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raina D, Ahmad R, Joshi M, Yin L, Wu Z, Kawano T et al. (2009). Direct targeting of the MUC1 oncoprotein blocks survival and tumorigenicity of human breast carcinoma cells. Cancer Res 69: 5133–5141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raina D, Ahmad R, Kumar S, Ren J, Yoshida K, Kharbanda S et al. (2006). MUC1 oncoprotein blocks nuclear targeting of c-Abl in the apoptotic response to DNA damage. EMBO J 25: 3774–3783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramasamy S, Duraisamy S, Barbashov S, Kawano T, Kharbanda S, Kufe D . (2007). The MUC1 and galectin-3 oncoproteins function in a microRNA-dependent regulatory loop. Mol Cell 27: 992–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren J, Agata N, Chen D, Li Y, Yu W-H, Huang L et al. (2004). Human MUC1 carcinoma-associated protein confers resistance to genotoxic anti-cancer agents. Cancer Cell 5: 163–175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren J, Bharti A, Raina D, Chen W, Ahmad R, Kufe D . (2006). MUC1 oncoprotein is targeted to mitochondria by heregulin-induced activation of c-Src and the molecular chaperone HSP90. Oncogene 25: 20–31.

    Article  CAS  PubMed  Google Scholar 

  • Ren J, Li Y, Kufe D . (2002). Protein kinase C δ regulates function of the DF3/MUC1 carcinoma antigen in β-catenin signaling. J Biol Chem 277: 17616–17622.

    Article  CAS  PubMed  Google Scholar 

  • Schindler C, Levy DE, Decker T . (2007). JAK-STAT signaling: from interferons to cytokines. J Biol Chem 282: 20059–20063.

    Article  CAS  PubMed  Google Scholar 

  • Shuai K . (2000). Modulation of STAT signaling by STAT-interacting proteins. Oncogene 19: 2638–2644.

    Article  CAS  PubMed  Google Scholar 

  • Tusher VG, Tibshirani R, Chu G . (2001). Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98: 10515.

    Article  CAS  Google Scholar 

  • Wei X, Xu H, Kufe D . (2005). Human MUC1 oncoprotein regulates p53-responsive gene transcription in the genotoxic stress response. Cancer Cell 7: 167–178.

    Article  CAS  PubMed  Google Scholar 

  • Wei X, Xu H, Kufe D . (2006). MUC1 oncoprotein stabilizes and activates estrogen receptor α. Mol Cell 21: 295–305.

    Article  CAS  PubMed  Google Scholar 

  • Wei X, Xu H, Kufe D . (2007). Human mucin 1 oncoprotein represses transcription of the p53 tumor suppressor gene. Cancer Res 67: 1853–1858.

    Article  CAS  PubMed  Google Scholar 

  • Weichselbaum RR, Ishwaran H, Yoon T, Nuyten DS, Baker SW, Khodarev N et al. (2008). An interferon-related gene signature for DNA damage resistance is a predictive marker for chemotherapy and radiation for breast cancer. Proc Natl Acad Sci USA 105: 18490–18495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin L, Kharbanda S, Kufe D . (2007). Mucin 1 oncoprotein blocks hypoxia-inducible factor 1 alpha activation in a survival response to hypoxia. J Biol Chem 282: 257–266.

    Article  CAS  PubMed  Google Scholar 

  • Yin L, Kufe D . (2003). Human MUC1 carcinoma antigen regulates intracellular oxidant levels and the apoptotic response to oxidative stress. J Biol Chem 278: 35458–35464.

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Jove R . (2004). The STATs of cancer—new molecular targets come of age. Nat Rev Cancer 4: 97–105.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants CA97098 and CA111423 awarded by the National Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Kufe.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khodarev, N., Ahmad, R., Rajabi, H. et al. Cooperativity of the MUC1 oncoprotein and STAT1 pathway in poor prognosis human breast cancer. Oncogene 29, 920–929 (2010). https://doi.org/10.1038/onc.2009.391

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.391

Keywords

This article is cited by

Search

Quick links