Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Matrix density-induced mechanoregulation of breast cell phenotype, signaling and gene expression through a FAK–ERK linkage

Abstract

Mammographically dense breast tissue is one of the greatest risk factors for developing breast carcinoma, yet the associated molecular mechanisms remain largely unknown. Importantly, regions of high breast density are associated with increased stromal collagen and epithelial cell content. We set out to determine whether increased collagen-matrix density, in the absence of stromal cells, was sufficient to promote proliferation and invasion characteristic of a malignant phenotype in non-transformed mammary epithelial cells. We demonstrate that increased collagen-matrix density increases matrix stiffness to promote an invasive phenotype. High matrix stiffness resulted in increased formation of activated three-dimensional (3D)-matrix adhesions and a chronically elevated outside-in/inside-out focal adhesion (FA) kinase (FAK)–Rho signaling loop, which was necessary to generate and maintain the invasive phenotype. Moreover, this signaling network resulted in hyperactivation of the Ras–mitogen-activated protein kinase (MAPK) pathway, which promoted growth of mammary epithelial cells in vitro and in vivo and activated a clinically relevant proliferation signature that predicts patient outcome. Hence, the current data provide compelling evidence for the importance of the mechanical features of the microenvironment, and suggest that mechanotransduction in these cells occurs through a FAK–Rho–ERK signaling network with extracellular signal-regulated kinase (ERK) as a bottleneck through which much of the response to mechanical stimuli is regulated. As such, we propose that increased matrix stiffness explains part of the mechanism behind increased epithelial proliferation and cancer risk in human patients with high breast tissue density.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Alowami S, Troup S, Al-Haddad S, Kirkpatrick I, Watson PH . (2003). Mammographic density is related to stroma and stromal proteoglycan expression. Breast Cancer Res 5: R129–R135.

    Article  CAS  Google Scholar 

  • Boyd NF, Lockwood GA, Byng JW, Tritchler DL, Yaffe MJ . (1998). Mammographic densities and breast cancer risk. Cancer Epidemiol Biomarkers Prev 7: 1133–1144.

    CAS  Google Scholar 

  • Boyd NF, Martin LJ, Stone J, Greenberg C, Minkin S, Yaffe MJ . (2001). Mammographic densities as a marker of human breast cancer risk and their use in chemoprevention. Curr Oncol Rep 3: 314–321.

    Article  CAS  Google Scholar 

  • Burridge K, Chrzanowska-Wodnicka M . (1996). Focal adhesions, contractility, and signaling. Annu Rev Cell Dev Biol 12: 463–519.

    Article  CAS  Google Scholar 

  • Burridge K, Fath K, Kelly T, Nuckolls G, Turner C . (1988). Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Annu Rev Cell Biol 4: 487–525.

    Article  CAS  Google Scholar 

  • Cance WG, Harris JE, Iacocca MV, Roche E, Yang X, Chang J et al. (2000). Immunohistochemical analyses of focal adhesion kinase expression in benign and malignant human breast and colon tissues: correlation with preinvasive and invasive phenotypes. Clin Cancer Res 6: 2417–2423.

    CAS  PubMed  Google Scholar 

  • Chambard JC, Lefloch R, Pouyssegur J, Lenormand P . (2007). ERK implication in cell cycle regulation. Biochim Biophys Acta 1773: 1299–1310.

    Article  CAS  Google Scholar 

  • Choquet D, Felsenfeld DP, Sheetz MP . (1997). Extracellular matrix rigidity causes strengthening of integrin–cytoskeleton linkages. Cell 88: 39–48.

    Article  CAS  Google Scholar 

  • Chrzanowska-Wodnicka M, Burridge K . (1996). Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J Cell Biol 133: 1403–1415.

    Article  CAS  Google Scholar 

  • Dhillon AS, Hagan S, Rath O, Kolch W . (2007). MAP kinase signalling pathways in cancer. Oncogene 26: 3279–3290.

    Article  CAS  Google Scholar 

  • Galbraith CG, Yamada KM, Sheetz MP . (2002). The relationship between force and focal complex development. J Cell Biol 159: 695–705.

    Article  CAS  Google Scholar 

  • Geiger B, Bershadsky A, Pankov R, Yamada KM . (2001). Transmembrane crosstalk between the extracellular matrix–cytoskeleton crosstalk. Nat Rev Mol Cell Biol 2: 793–805.

    Article  CAS  Google Scholar 

  • Giancotti FG, Ruoslahti E . (1999). Integrin signaling. Science 285: 1028–1032.

    Article  CAS  Google Scholar 

  • Gill JK, Maskarinec G, Pagano I, Kolonel LN . (2006). The association of mammographic density with ductal carcinoma in situ of the breast: the Multiethnic Cohort. Breast Cancer Res 8: R30.

    Article  Google Scholar 

  • Guo YP, Martin LJ, Hanna W, Banerjee D, Miller N, Fishell E et al. (2001). Growth factors and stromal matrix proteins associated with mammographic densities. Cancer Epidemiol Biomarkers Prev 10: 243–248.

    CAS  PubMed  Google Scholar 

  • Habel LA, Dignam JJ, Land SR, Salane M, Capra AM, Julian TB . (2004). Mammographic density and breast cancer after ductal carcinoma in situ. J Natl Cancer Inst 96: 1467–1472.

    Article  Google Scholar 

  • Keely P, Fong A, Zutter M, Santoro S . (1995). Alteration of collagen-dependent adhesion, motility, and morphogenesis by the expression of antisense alpha 2 integrin mRNA in mammary cells. J Cell Science 108: 595–607.

    CAS  PubMed  Google Scholar 

  • Klemke RL, Cai S, Giannini AL, Gallagher PJ, de Lanerolle P, Cheresh DA . (1997). Regulation of cell motility by mitogen-activated protein kinase. J Cell Biol 137: 481–492.

    Article  CAS  Google Scholar 

  • Krouskop TA, Wheeler TM, Kallel F, Garra BS, Hall T . (1998). Elastic moduli of breast and prostate tissues under compression. Ultrason Imaging 20: 260–274.

    Article  CAS  Google Scholar 

  • Lahlou H, Sanguin-Gendreau V, Zuo D, Cardiff RD, McLean GW, Frame MC et al. (2007). Mammary epithelial-specific disruption of the focal adhesion kinase blocks mammary tumor progression. Proc Natl Acad Sci USA 104: 20302–20307.

    Article  CAS  Google Scholar 

  • Li T, Sun L, Miller N, Nicklee T, Woo J, Hulse-Smith L et al. (2005). The association of measured breast tissue characteristics with mammographic density and other risk factors for breast cancer. Cancer Epidemiol Biomarkers Prev 14: 343–349.

    Article  Google Scholar 

  • Mansour SJ, Matten WT, Hermann AS, Candia JM, Rong S, Fukasawa K et al. (1994). Transformation of mammalian cells by constitutively active MAP kinase kinase. Science 265: 966–970.

    Article  CAS  Google Scholar 

  • Martin LJ, Boyd NF . (2008). Mammographic density. Potential mechanisms of breast cancer risk associated with mammographic density: hypotheses based on epidemiological evidence. Breast Cancer Res 10: 201.

    Article  Google Scholar 

  • McCormack VA, dos Santos Silva I . (2006). Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev 15: 1159–1169.

    Article  Google Scholar 

  • Mitra SK, Hanson DA, Schlaepfer DD . (2005). Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol 6: 56–68.

    Article  CAS  Google Scholar 

  • Oh IH, Reddy EP . (1999). The myb gene family in cell growth, differentiation and apoptosis. Oncogene 18: 3017–3033.

    Article  CAS  Google Scholar 

  • Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A et al. (2005). Tensional homeostasis and the malignant phenotype. Cancer Cell 8: 241–254.

    Article  CAS  Google Scholar 

  • Pelham Jr RJ, Wang Y . (1997). Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci USA 94: 13661–13665.

    Article  CAS  Google Scholar 

  • Playford MP, Schaller MD . (2004). The interplay between Src and integrins in normal and tumor biology. Oncogene 23: 7928–7946.

    Article  CAS  Google Scholar 

  • Plewes DB, Bishop J, Samani A, Sciarretta J . (2000). Visualization and quantification of breast cancer biomechanical properties with magnetic resonance elastography. Phys Med Biol 45: 1591–1610.

    Article  CAS  Google Scholar 

  • Provenzano PP, Inman DR, Eliceiri KW, Beggs HE, Keely PJ . (2008a). Mammary epithelial-specific disruption of focal adhesion kinase retards tumor formation and metastasis in a transgenic mouse model of human breast cancer. Am J Pathol 173: 1551–1565.

    Article  CAS  Google Scholar 

  • Provenzano PP, Inman DR, Eliceiri KW, Knittel JG, Yan L, Rueden CT et al. (2008b). Collagen density promotes mammary tumor initiation and progression. BMC Med 6: 11.

    Article  Google Scholar 

  • Provenzano PP, Inman DR, Eliceiri KW, Trier SM, Keely PJ . (2008c). Contact guidance mediated three-dimensional cell migration is regulated by Rho/ROCK-dependent matrix reorganization. Biophys J 95: 5374–5384.

    Article  CAS  Google Scholar 

  • Provenzano PP, Martinez DA, Grindeland RE, Dwyer KW, Turner J, Vailas AC et al. (2003). Hindlimb unloading alters ligament healing. J Appl Physiol 94: 314–324.

    Article  Google Scholar 

  • Provenzano PP, Vanderby Jr R . (2006). Collagen fibril morphology and organization: implications for force transmission in ligament and tendon. Matrix Biol 25: 71–84.

    Article  CAS  Google Scholar 

  • Ridley AJ, Hall A . (1992). The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70: 389–399.

    Article  CAS  Google Scholar 

  • Riveline D, Zamir E, Balaban NQ, Schwarz US, Ishizaki T, Narumiya S et al. (2001). Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J Cell Biol 153: 1175–1186.

    Article  CAS  Google Scholar 

  • Roeder BA, Kokini K, Sturgis JE, Robinson JP, Voytik-Harbin SL . (2002). Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure. J Biomech Eng 124: 214–222.

    Article  Google Scholar 

  • Samani A, Bishop J, Yaffe MJ, Plewes DB . (2001). Biomechanical 3-D finite element modeling of the human breast using MRI data. IEEE Trans Med Imaging 20: 271–279.

    Article  CAS  Google Scholar 

  • Sarvazyan AP, Skovaroda AR, Emelianov SY, Fowlkes JB, Pipe JG, Adler RS et al. (1995). Biophysical bases of elasticity imaging. Acoust Imaging 21: 223–240.

  • Schaller MD, Hildebrand JD, Shannon JD, Fox JW, Vines RR, Parsons JT . (1994). Autophosphorylation of the focal adhesion kinase, pp125FAK, directs SH2-dependent binding of pp60src. Mol Cell Biol 14: 1680–1688.

    Article  CAS  Google Scholar 

  • Schlaepfer DD, Hunter T . (1996). Evidence for in vivo phosphorylation of the Grb2 SH2-domain binding site on focal adhesion kinase by Src-family protein-tyrosine kinases. Mol Cell Biol 16: 5623–5633.

    Article  CAS  Google Scholar 

  • Schlaepfer DD, Jones KC, Hunter T . (1998). Multiple Grb2-mediated integrin-stimulated signaling pathways to ERK2/mitogen-activated protein kinase: summation of both c-Src- and focal adhesion kinase-initiated tyrosine phosphorylation events. Mol Cell Biol 18: 2571–2585.

    Article  CAS  Google Scholar 

  • Sniadecki NJ, Anguelouch A, Yang MT, Lamb CM, Liu Z, Kirschner SB et al. (2007). Magnetic microposts as an approach to apply forces to living cells. Proc Natl Acad Sci USA 104: 14553–14558.

    Article  CAS  Google Scholar 

  • Sumi C, Nakayama K, Kubota M . (2000). An effective ultrasonic strain measurement-based shear modulus reconstruction technique for superficial tissues—demonstration on in vitro pork ribs and in vivo human breast tissues. Phys Med Biol 45: 1511–1520.

    Article  CAS  Google Scholar 

  • Turjanski AG, Vaque JP, Gutkind JS . (2007). MAP kinases and the control of nuclear events. Oncogene 26: 3240–3253.

    Article  CAS  Google Scholar 

  • Ursin G, Hovanessian-Larsen L, Parisky YR, Pike MC, Wu AH . (2005). Greatly increased occurrence of breast cancers in areas of mammographically dense tissue. Breast Cancer Res 7: R605–R608.

    Article  Google Scholar 

  • van de Vijver MJ, He YD, van't Veer LJ, Dai H, Hart AA, Voskuil DW et al. (2002). A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347: 1999–2009.

    Article  CAS  Google Scholar 

  • Wang HB, Dembo M, Hanks SK, Wang Y . (2001a). Focal adhesion kinase is involved in mechanosensing during fibroblast migration. Proc Natl Acad Sci USA 98: 11295–11300.

    Article  CAS  Google Scholar 

  • Wang JG, Miyazu M, Matsushita E, Sokabe M, Naruse K . (2001b). Uniaxial cyclic stretch induces focal adhesion kinase (FAK) tyrosine phosphorylation followed by mitogen-activated protein kinase (MAPK) activation. Biochem Biophys Res Commun 288: 356–361.

    Article  CAS  Google Scholar 

  • Wang JG, Miyazu M, Xiang P, Li SN, Sokabe M, Naruse K . (2005). Stretch-induced cell proliferation is mediated by FAK-MAPK pathway. Life Sci 76: 2817–2825.

    Article  CAS  Google Scholar 

  • Weaver VM, Petersen OW, Wang F, Larabell CA, Briand P, Damsky C et al. (1997). Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J Cell Biol 137: 231–245.

    Article  CAS  Google Scholar 

  • Whitfield ML, George LK, Grant GD, Perou CM . (2006). Common markers of proliferation. Nat Rev Cancer 6: 99–106.

    Article  CAS  Google Scholar 

  • Wozniak MA, Desai R, Solski P, Der CJ, Keely PJ . (2003). ROCK-generated contractility regulates breast epithelial cell differentiation in response to the physical properties of a three-dimensional collagen matrix. J Cell Biol 163: 583–595.

    Article  CAS  Google Scholar 

  • Xing Z, Chen HC, Nowlen JK, Taylor SJ, Shalloway D, Guan JL . (1994). Direct interaction of v-Src with the focal adhesion kinase mediated by the Src SH2 domain. Mol Biol Cell 5: 413–421.

    Article  CAS  Google Scholar 

  • Yeung T, Georges PC, Flanagan LA, Marg B, Ortiz M, Funaki M et al. (2005). Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskeleton 60: 24–34.

    Article  Google Scholar 

  • Yoon S, Seger R . (2006). The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors 24: 21–44.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs Caroline Alexander and Andreas Friedl for helpful discussions regarding mice and xenograft experiments; Drs Ray Vanderby, Ashish Oza and Wilmot Valhmu for helpful discussions and equipment access for mechanical testing, and Dr John G White for helpful discussions regarding microscopy. This work was supported by an NIH postdoctoral training grant (T32CA009681) to PPP, and grants from the DOD (W81XWH-04-1-042 (PPP)), Am. Cancer Soc. (RSG-00-339CSM (PJK)) and NIH (CA076537 (PJK) and EB000184 (KWE)).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P P Provenzano or P J Keely.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Provenzano, P., Inman, D., Eliceiri, K. et al. Matrix density-induced mechanoregulation of breast cell phenotype, signaling and gene expression through a FAK–ERK linkage. Oncogene 28, 4326–4343 (2009). https://doi.org/10.1038/onc.2009.299

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.299

Keywords

This article is cited by

Search

Quick links