Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Thyroid hormone receptor mutants implicated in human hepatocellular carcinoma display an altered target gene repertoire

Abstract

Thyroid hormone receptors (TRs) are hormone-regulated transcription factors that control multiple aspects of normal physiology and development. Mutations in TRs have been identified at high frequency in certain cancers, including human hepatocellular carcinomas (HCCs). The majority of HCC–TR mutants bear lesions within their DNA recognition domains, and we have hypothesized that these lesions change the mutant receptors’ target gene repertoire in a way crucial to their function as oncoproteins. Using stable cell transformants and expression array analysis, we determined that mutant TRs isolated from two different HCCs do, as hypothesized, display a target gene repertoire distinct from that of their normal TR progenitors. Only a subset of genes regulated by wild-type TRs was regulated by the corresponding HCC–TR mutants. More surprisingly, the HCC–TR mutants also gained the ability to regulate additional target genes not recognized by the wild-type receptors, and were not simply restricted to repression, but could also activate a subset of their target genes. We conclude that the TR mutants isolated from HCC have sustained multiple alterations from their normal progenitors that include not only changes in their transcriptional outputs, but also changes in the genes they target; both are likely to contribute to neoplasia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Barlow C, Meister B, Lardelli M, Lendahl U, Vennstrom B . (1994). Thyroid abnormalities and hepatocellular carcinoma in mice transgenic for v-erbA. EMBO J 13: 4241–4250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berghagen H, Ragnhildstveit E, Krogsrud K, Thuestad G, Apriletti J, Saatcioglu F . (2002). Corepressor SMRT functions as a coactivator for thyroid hormone receptor T3Ralpha from a negative hormone response element. J Biol Chem 277: 49517–49522.

    Article  CAS  PubMed  Google Scholar 

  • Bonde BG, Privalsky ML . (1990). Sequence-specific DNA binding by the v-erbA oncogene protein of avian erythroblastosis virus. J Virol 64: 1314–1320.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brent GA . (2000). Tissue-specific actions of thyroid hormone: insights from animal models. Rev Endocr Metab Disord 1: 27–33.

    Article  CAS  PubMed  Google Scholar 

  • Buchholz DR, Paul BD, Fu L, Shi YB . (2006). Molecular and developmental analyses of thyroid hormone receptor function in Xenopus laevis, the African clawed frog. Gen Comp Endocrinol 145: 1–19.

    Article  CAS  PubMed  Google Scholar 

  • Chamba A, Neuberger J, Strain A, Hopkins J, Sheppard MC, Franklyn JA . (1996). Expression and function of thyroid hormone receptor variants in normal and chronically diseased human liver. J Clin Endocrinol Metab 81: 360–367.

    CAS  PubMed  Google Scholar 

  • Chan IH, Privalsky ML . (2006). Thyroid hormone receptors mutated in liver cancer function as distorted antimorphs. Oncogene 25: 3576–3588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Smit-McBride Z, Lewis S, Sharif M, Privalsky ML . (1993). Nuclear hormone receptors involved in neoplasia: erb A exhibits a novel DNA sequence specificity determined by amino acids outside of the zinc-finger domain. Mol Cell Biol 13: 2366–2376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng SY . (2000). Multiple mechanisms for regulation of the transcriptional activity of thyroid hormone receptors. Rev Endocr Metab Disord 1: 9–18.

    Article  CAS  PubMed  Google Scholar 

  • Cheng SY . (2003). Thyroid hormone receptor mutations in cancer. Mol Cell Endocrinol 213: 23–30.

    Article  CAS  PubMed  Google Scholar 

  • Cheng SY . (2005). Thyroid hormone receptor mutations and disease: beyond thyroid hormone resistance. Trends Endocrinol Metab 16: 176–182.

    Article  CAS  PubMed  Google Scholar 

  • Damm K, Thompson CC, Evans RM . (1989). Protein encoded by v-erbA functions as a thyroid-hormone receptor antagonist. Nature 339: 593–597.

    Article  CAS  PubMed  Google Scholar 

  • Darby IA, Bouhnik J, Coezy ED, Corvol P . (1991). Thyroid hormone receptors and stimulation of angiotensinogen production in HepG2 cells. in vitro Cell Dev Biol 27: 21–24.

    Article  CAS  PubMed  Google Scholar 

  • DeGroot LJ . (1996). Resistance to thyroid hormone. Ann Intern Med 125: 623.

    Article  CAS  PubMed  Google Scholar 

  • Desbois C, Aubert D, Legrand C, Pain B, Samarut J . (1991). A novel mechanism of action for v-ErbA: abrogation of the inactivation of transcription factor AP-1 by retinoic acid and thyroid hormone receptors. Cell 67: 731–740.

    Article  CAS  PubMed  Google Scholar 

  • Flamant F, Baxter JD, Forrest D, Refetoff S, Samuels H, Scanlan TS et al. (2006). International Union of Pharmacology. LIX. The pharmacology and classification of the nuclear receptor superfamily: thyroid hormone receptors. Pharmacol Rev 58: 705–711.

    Article  CAS  PubMed  Google Scholar 

  • Furumoto H, Ying H, Chandramouli GV, Zhao L, Walker RL, Meltzer PS et al. (2005). An unliganded thyroid hormone beta receptor activates the cyclin D1/cyclin-dependent kinase/retinoblastoma/E2F pathway and induces pituitary tumorigenesis. Mol Cell Biol 25: 124–135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furuya F, Hanover JA, Cheng SY . (2006). Activation of phosphatidylinositol 3-kinase signaling by a mutant thyroid hormone beta receptor. Proc Natl Acad Sci USA 103: 1780–1785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Silva S, Aranda A . (2004). The thyroid hormone receptor is a suppressor of ras-mediated transcription, proliferation, and transformation. Mol Cell Biol 24: 7514–7523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Sancho JM, Garcia V, Bonilla F, Munoz A . (2003). Thyroid hormone receptors/THR genes in human cancer. Cancer Lett 192: 121–132.

    Article  CAS  PubMed  Google Scholar 

  • Graf T, Beug H . (1983). Role of the v-erbA and v-erbB oncogenes of avian erythroblastosis virus in erythroid cell transformation. Cell 34: 7–9.

    Article  CAS  PubMed  Google Scholar 

  • Harvey CB, Williams GR . (2002). Mechanism of thyroid hormone action. Thyroid 12: 441–446.

    Article  CAS  PubMed  Google Scholar 

  • Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U et al. (2003). Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4: 249–264.

    Article  PubMed  Google Scholar 

  • Kamiya Y, Puzianowska-Kuznicka M, McPhie P, Nauman J, Cheng SY, Nauman A . (2002). Expression of mutant thyroid hormone nuclear receptors is associated with human renal clear cell carcinoma. Carcinogenesis 23: 25–33.

    Article  CAS  PubMed  Google Scholar 

  • Katz RW, Koenig RJ . (1993). Nonbiased identification of DNA sequences that bind thyroid hormone receptor alpha 1 with high affinity. J Biol Chem 268: 19392–19397.

    CAS  PubMed  Google Scholar 

  • Kopp P, Kitajima K, Jameson JL . (1996). Syndrome of resistance to thyroid hormone: insights into thyroid hormone action. Proc Soc Exp Biol Med 211: 49–61.

    Article  CAS  PubMed  Google Scholar 

  • Lazar MA . (1993). Thyroid hormone receptors: multiple forms, multiple possibilities. Endocr Rev 14: 184–193.

    CAS  PubMed  Google Scholar 

  • Lazar MA . (2003). Thyroid hormone action: a binding contract. J Clin Invest 112: 497–499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee AY, He B, You L, Xu Z, Mazieres J, Reguart N et al. (2004). Dickkopf-1 antagonizes Wnt signaling independent of beta-catenin in human mesothelioma. Biochem Biophys Res Commun 323: 1246–1250.

    Article  CAS  PubMed  Google Scholar 

  • Lin KH, Shieh HY, Chen SL, Hsu HC . (1999). Expression of mutant thyroid hormone nuclear receptors in human hepatocellular carcinoma cells. Mol Carcinog 26: 53–61.

    Article  CAS  PubMed  Google Scholar 

  • Lin KH, Zhu XG, Hsu HC, Chen SL, Shieh HY, Chen ST et al. (1997). Dominant negative activity of mutant thyroid hormone alpha1 receptors from patients with hepatocellular carcinoma. Endocrinology 138: 5308–5315.

    Article  CAS  PubMed  Google Scholar 

  • Lin KH, Zhu XG, Shieh HY, Hsu HC, Chen ST, McPhie P et al. (1996). Identification of naturally occurring dominant negative mutants of thyroid hormone alpha 1 and beta 1 receptors in a human hepatocellular carcinoma cell line. Endocrinology 137: 4073–4081.

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Iglesias O, Garcia-Silva S, Tenbaum SP, Regadera J, Larcher F, Paramio JM et al. (2009). Thyroid hormone receptor beta1 acts as a potent suppressor of tumor invasiveness and metastasis. Cancer Res 69: 501–509.

    Article  CAS  PubMed  Google Scholar 

  • Matsushita A, Sasaki S, Kashiwabara Y, Nagayama K, Ohba K, Iwaki H et al. (2007). Essential role of GATA2 in the negative regulation of thyrotropin beta gene by thyroid hormone and its receptors. Mol Endocrinol 21: 865–884.

    Article  CAS  PubMed  Google Scholar 

  • Meyer T, Starr DB, Carlstedt-Duke J . (1997). The rat glucocorticoid receptor mutant K461A differentiates between two different mechanisms of transrepression. J Biol Chem 272: 21090–21095.

    Article  CAS  PubMed  Google Scholar 

  • Mikheev AM, Mikheeva SA, Maxwell JP, Rivo JV, Rostomily R, Swisshelm K et al. (2008). Dickkopf-1 mediated tumor suppression in human breast carcinoma cells. Breast Cancer Res Treat 112: 263–273.

    Article  CAS  PubMed  Google Scholar 

  • Miller LD, Park KS, Guo QM, Alkharouf NW, Malek RL, Lee NH et al. (2001). Silencing of Wnt signaling and activation of multiple metabolic pathways in response to thyroid hormone-stimulated cell proliferation. Mol Cell Biol 21: 6626–6639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murata Y . (1998). Multiple isoforms of thyroid hormone receptor: an analysis of their relative contribution in mediating thyroid hormone action. Nagoya J Med Sci 61: 103–115.

    CAS  PubMed  Google Scholar 

  • Nygard M, Wahlstrom GM, Gustafsson MV, Tokumoto YM, Bondesson M . (2003). Hormone-dependent repression of the E2F-1 gene by thyroid hormone receptors. Mol Endocrinol 17: 79–92.

    Article  CAS  PubMed  Google Scholar 

  • Privalsky ML . (1992). v-erb A, nuclear hormone receptors, and oncogenesis. Biochim Biophys Acta 1114: 51–62.

    CAS  PubMed  Google Scholar 

  • Privalsky ML . (2008). Thryoid Hormone Receptors, Coregulators, and Disease. World Scientific Publishing, Ltd.: London.

    Google Scholar 

  • Puzianowska-Kuznicka M, Krystyniak A, Madej A, Cheng SY, Nauman J . (2002). Functionally impaired TR mutants are present in thyroid papillary cancer. J Clin Endocrinol Metab 87: 1120–1128.

    Article  CAS  PubMed  Google Scholar 

  • Ramachandran V, Arumugam T, Wang H, Logsdon CD . (2008). Anterior gradient 2 is expressed and secreted during the development of pancreatic cancer and promotes cancer cell survival. Cancer Res 68: 7811–7818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rastinejad F, Perlmann T, Evans RM, Sigler PB . (1995). Structural determinants of nuclear receptor assembly on DNA direct repeats. Nature 375: 203–211.

    Article  CAS  PubMed  Google Scholar 

  • Refetoff S . (1993). Resistance to thyroid hormone. Clin Lab Med 13: 563–581.

    Article  CAS  PubMed  Google Scholar 

  • Refetoff S, Weiss RE, Usala SJ . (1993). The syndromes of resistance to thyroid hormone. Endocr Rev 14: 348–399.

    CAS  PubMed  Google Scholar 

  • Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, Mesirov JP . (2006). GenePattern 2.0. Nat Genet 38: 500–501.

    Article  CAS  PubMed  Google Scholar 

  • Ricciardelli C, Sakko AJ, Ween MP, Russell DL, Horsfall DJ . (2009). The biological role and regulation of versican levels in cancer. Cancer Metastasis Rev 28: 233–245.

    Article  PubMed  Google Scholar 

  • Rietveld LE, Caldenhoven E, Stunnenberg HG . (2001). Avian erythroleukemia: a model for corepressor function in cancer. Oncogene 20: 3100–3109.

    Article  CAS  PubMed  Google Scholar 

  • Rosen MD, Privalsky ML . (2009). Thyroid hormone receptors involved in renal clear cell carcinoma alter corepressor release and reveal helix 12 as a key determinant of corepressor specificity. Mol Endocrinol 23: 1183–1192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sap J, Munoz A, Damm K, Goldberg Y, Ghysdael J, Leutz A et al. (1986). The c-erb-A protein is a high-affinity receptor for thyroid hormone. Nature 324: 635–640.

    Article  CAS  PubMed  Google Scholar 

  • Sharif M, Privalsky ML . (1991). v-erbA oncogene function in neoplasia correlates with its ability to repress retinoic acid receptor action. Cell 66: 885–893.

    Article  CAS  PubMed  Google Scholar 

  • Sharif M, Privalsky ML . (1992). V-erbA and c-erbA proteins enhance transcriptional activation by c-jun. Oncogene 7: 953–960.

    CAS  PubMed  Google Scholar 

  • Smyth GK . (2004). Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3: Article3.

    Article  PubMed  Google Scholar 

  • Starr DB, Matsui W, Thomas JR, Yamamoto KR . (1996). Intracellular receptors use a common mechanism to interpret signaling information at response elements. Genes Dev 10: 1271–1283.

    Article  CAS  PubMed  Google Scholar 

  • Tagami T, Madison LD, Nagaya T, Jameson JL . (1997). Nuclear receptor corepressors activate rather than suppress basal transcription of genes that are negatively regulated by thyroid hormone. Mol Cell Biol 17: 2642–2648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theriault A, Ogbonna G, Adeli K . (1992). Thyroid hormone modulates apolipoprotein B gene expression in HepG2 cells. Biochem Biophys Res Commun 186: 617–623.

    Article  CAS  PubMed  Google Scholar 

  • Tsai CC, Fondell JD . (2004). Nuclear receptor recruitment of histone-modifying enzymes to target gene promoters. Vitam Horm 68: 93–122.

    Article  CAS  PubMed  Google Scholar 

  • Uht RM, Webb P, Nguyen P, Price Jr RH, Valentine C, Favre H et al. (2004). A conserved lysine in the estrogen receptor DNA binding domain regulates ligand activation profiles at AP-1 sites, possibly by controlling interactions with a modulating repressor. Nucl Recept 2: 2.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vadlamudi RK, Kumar R . (2003). P21-activated kinases in human cancer. Cancer Metastasis Rev 22: 385–393.

    Article  CAS  PubMed  Google Scholar 

  • Ventura-Holman T, Mamoon A, Subauste JS . (2008). Modulation of expression of RA-regulated genes by the oncoprotein v-erbA. Gene 425: 23–27.

    Article  CAS  PubMed  Google Scholar 

  • Vogelstein B, Kinzler KW . (2004). Cancer genes and the pathways they control. Nat Med 10: 789–799.

    Article  CAS  PubMed  Google Scholar 

  • Weinberger C, Thompson CC, Ong ES, Lebo R, Gruol DJ, Evans RM . (1986). The c-erb-A gene encodes a thyroid hormone receptor. Nature 324: 641–646.

    Article  CAS  PubMed  Google Scholar 

  • Yen PM . (2001). Physiological and molecular basis of thyroid hormone action. Physiol Rev 81: 1097–1142.

    Article  CAS  PubMed  Google Scholar 

  • Yen PM . (2003). Molecular basis of resistance to thyroid hormone. Trends Endocrinol Metab 14: 327–333.

    Article  CAS  PubMed  Google Scholar 

  • Yen PM, Cheng SY . (2003). Germline and somatic thyroid hormone receptor mutations in man. J Endocrinol Invest 26: 780–787.

    Article  CAS  PubMed  Google Scholar 

  • Zenke M, Munoz A, Sap J, Vennstrom B, Beug H . (1990). v-erbA oncogene activation entails the loss of hormone-dependent regulator activity of c-erbA. Cell 61: 1035–1049.

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Lazar MA . (2000). The mechanism of action of thyroid hormones. Annu Rev Physiol 62: 439–466.

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Cui R, Cheng X, Du J . (2005). Antiapoptotic effect of serum and glucocorticoid inducible protein kinase is mediated by a novel mechanism activating IkappaB. Cancer Res 65: 457–464.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are extremely grateful to Liming Liu for excellent technical assistance, Michael L Goodson for expert assistance in analysis of the array data, and Elsie L Campbell for helpful discussions. This work was supported by the Public Health Service/National Cancer Institute award R37-CA53394 and by the UC Davis Cancer Center Gene Expression Resource (NCI P30-CA93373). IHC was supported in part by a PHS pre-doctoral training award, T32-GM007377, from the National Institute of General Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M L Privalsky.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, I., Privalsky, M. Thyroid hormone receptor mutants implicated in human hepatocellular carcinoma display an altered target gene repertoire. Oncogene 28, 4162–4174 (2009). https://doi.org/10.1038/onc.2009.265

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.265

Keywords

This article is cited by

Search

Quick links