Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Upregulation of lactate dehydrogenase A by ErbB2 through heat shock factor 1 promotes breast cancer cell glycolysis and growth

Abstract

ErbB2 has been shown to activate signaling molecules that may regulate glucose metabolism. However, there is no evidence reported to directly link ErbB2 to glycolysis, and the mechanism underlying ErbB2-enhanced glycolysis is poorly understood. In this study, we investigated the role and mechanism of ErbB2 in regulating glycolysis. We found that ErbB2-overexpressing cells possessed a significantly higher level of glycolysis when compared to the ErbB2-low-expressing cells, and the downregulation of ErbB2 markedly decreased glycolysis. Overexpression of ErbB2 increased the expression of glycolysis-regulating molecules lactate dehydrogenase A (LDH-A) and heat shock factor 1 (HSF1). ErbB2 activated HSF1, indicated by the increased HSF1 trimer formation, and promoted HSF1 protein synthesis. HSF1 bound to LDH-A promoter and the downregulation of HSF1 reduced the expression of LDH-A and subsequently decreased cancer cell glycolysis and growth. Moreover, the glycolysis inhibitors, 2-deoxyglucose and oxamate, selectively inhibited the growth of ErbB2-overexpressing cells. Taken together, this study shows that in human breast cancer cells, ErbB2 promotes glycolysis at least partially through the HSF1-mediated upregulation of LDH-A. This pathway may have a major role in regulating glucose metabolism in breast cancer cells. These novel findings have important implications for the design of new approaches to target ErbB2-overexpressing breast cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Balinsky D, Platz CE, Lewis JW . (1983). Isozyme patterns of normal, benign, and malignant human breast tissues. Cancer Res 43: 5895–5901.

    CAS  PubMed  Google Scholar 

  • Benz CC, Scott GK, Sarup JC, Johnson RM, Tripathy D, Coronado E et al. (1992). Estrogen-dependent, tamoxifen-resistant tumorigenic growth of MCF-7 cells transfected with HER2/neu. Breast Cancer Res Treat 24: 85–95.

    Article  CAS  Google Scholar 

  • Chen Z, Lu W, Garcia-Prieto C, Huang P . (2007). The Warburg effect and its cancer therapeutic implications. J Bioenerg Biomembr 39: 267–274.

    Article  CAS  Google Scholar 

  • Dai C, Whitesell L, Rogers AB, Lindquist S . (2007). Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell 130: 1005–1018.

    Article  CAS  Google Scholar 

  • Dang CV, Semenza GL . (1999). Oncogenic alterations of metabolism. Trends Biochem Sci 24: 68–72.

    Article  CAS  Google Scholar 

  • DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB . (2008). The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7: 11–20.

    Article  CAS  Google Scholar 

  • Fantin VR, St-Pierre J, Leder P . (2006). Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9: 425–434.

    Article  CAS  Google Scholar 

  • Garber K . (2006). Energy deregulation: licensing tumors to grow. Science 312: 1158–1159.

    Article  CAS  Google Scholar 

  • Gatenby RA, Gillies RJ . (2007). Glycolysis in cancer: a potential target for therapy. Int J Biochem Cell Biol 39: 1358–1366.

    Article  CAS  Google Scholar 

  • Gillies RJ, Robey I, Gatenby RA . (2008). Causes and consequences of increased glucose metabolism of cancers. J Nucl Med 49 (Suppl 2): 24S–42S.

    Article  CAS  Google Scholar 

  • Guy CT, Webster MA, Schaller M, Parsons TJ, Cardiff RD, Muller WJ . (1992). Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc Natl Acad Sci USA 89: 10578–10582.

    Article  CAS  Google Scholar 

  • Hsu PP, Sabatini DM . (2008). Cancer cell metabolism: Warburg and beyond. Cell 134: 703–707.

    Article  CAS  Google Scholar 

  • Khaleque MA, Bharti A, Gong J, Gray PJ, Sachdev V, Ciocca DR et al. (2008). Heat shock factor 1 represses estrogen-dependent transcription through association with MTA1. Oncogene 27: 1886–1893.

    Article  CAS  Google Scholar 

  • Khaleque MA, Bharti A, Sawyer D, Gong J, Benjamin IJ, Stevenson MA et al. (2005). Induction of heat shock proteins by heregulin beta1 leads to protection from apoptosis and anchorage-independent growth. Oncogene 24: 6564–6573.

    Article  CAS  Google Scholar 

  • Kim JW, Dang CV . (2006). Cancer's molecular sweet tooth and the Warburg effect. Cancer Res 66: 8927–8930.

    Article  CAS  Google Scholar 

  • Kroemer G, Pouyssegur J . (2008). Tumor cell metabolism: cancer's Achilles’ heel. Cancer Cell 13: 472–482.

    Article  CAS  Google Scholar 

  • Laughner E, Taghavi P, Chiles K, Mahon PC, Semenza GL . (2001). HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol Cell Biol 21: 3995–4004.

    Article  CAS  Google Scholar 

  • Li YM, Zhou BP, Deng J, Pan Y, Hay N, Hung MC . (2005). A hypoxia-independent hypoxia-inducible factor-1 activation pathway induced by phosphatidylinositol-3 kinase/Akt in HER2 overexpressing cells. Cancer Res 65: 3257–3263.

    Article  CAS  Google Scholar 

  • Liu H, Zhou M, Luo X, Zhang L, Niu Z, Peng C et al. (2008). Transcriptional regulation of BRD7 expression by Sp1 and c-Myc. BMC Mol Biol 9: 111–124.

    Article  Google Scholar 

  • Lu J, Tan M, Huang WC, Li P, Guo H, Tseng LM et al. (2009). Mitotic deregulation by survivin in ErbB2-overexpressing breast cancer cells contributes to Taxol resistance. Clin Cancer Res 15: 1326–1334.

    Article  CAS  Google Scholar 

  • Min JN, Huang L, Zimonjic DB, Moskophidis D, Mivechi NF . (2007). Selective suppression of lymphomas by functional loss of Hsf1 in a p53-deficient mouse model for spontaneous tumors. Oncogene 26: 5086–5097.

    Article  CAS  Google Scholar 

  • Nguyen T, Ogbi M, Johnson JA . (2008). Delta protein kinase C interacts with the d subunit of the F1F0 ATPase in neonatal cardiac myocytes exposed to hypoxia or phorbol ester. Implications for F1F0 ATPase regulation. J Biol Chem 283: 29831–29840.

    Article  CAS  Google Scholar 

  • Pelicano H, Martin DS, Xu RH, Huang P . (2006). Glycolysis inhibition for anticancer treatment. Oncogene 25: 4633–4646.

    Article  CAS  Google Scholar 

  • Ramanathan A, Wang C, Schreiber SL . (2005). Perturbational profiling of a cell-line model of tumorigenesis by using metabolic measurements. Proc Natl Acad Sci USA 102: 5992–5997.

    Article  CAS  Google Scholar 

  • Rutter J, Reick M, Wu LC, McKnight SL . (2001). Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 293: 510–514.

    Article  CAS  Google Scholar 

  • Sarge KD, Murphy SP, Morimoto RI . (1993). Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol Cell Biol 13: 1392–1407.

    Article  CAS  Google Scholar 

  • Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE et al. (1989). Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244: 707–712.

    Article  CAS  Google Scholar 

  • Tan M, Jing T, Lan KH, Neal CL, Li P, Lee S et al. (2002). Phosphorylation on tyrosine-15 of p34(Cdc2) by ErbB2 inhibits p34(Cdc2) activation and is involved in resistance to taxol-induced apoptosis. Mol Cell 9: 993–1004.

    Article  CAS  Google Scholar 

  • Tan M, Lan KH, Yao J, Lu CH, Sun M, Neal CL et al. (2006a). Selective inhibition of ErbB2-overexpressing breast cancer in vivo by a novel TAT-based ErbB2-targeting signal transducers and activators of transcription 3-blocking peptide. Cancer Res 66: 3764–3772.

    Article  CAS  Google Scholar 

  • Tan M, Li P, Klos KS, Lu J, Lan KH, Nagata Y et al. (2005). ErbB2 promotes Src synthesis and stability: novel mechanisms of Src activation that confer breast cancer metastasis. Cancer Res 65: 1858–1867.

    Article  CAS  Google Scholar 

  • Tan M, Li P, Sun M, Yin G, Yu D . (2006b). Upregulation and activation of PKC alpha by ErbB2 through Src promotes breast cancer cell invasion that can be blocked by combined treatment with PKC alpha and Src inhibitors. Oncogene 25: 3286–3295.

    Article  CAS  Google Scholar 

  • Tan M, Yao J, Yu D . (1997). Overexpression of the c-erbB-2 gene enhanced intrinsic metastasis potential in human breast cancer cells without increasing their transformation abilities. Cancer Res 57: 1199–1205.

    CAS  PubMed  Google Scholar 

  • Wadekar SA, Li D, Sanchez ER . (2004). Agonist-activated glucocorticoid receptor inhibits binding of heat shock factor 1 to the heat shock protein 70 promoter in vivo. Mol Endocrinol 18: 500–508.

    Article  CAS  Google Scholar 

  • Warburg O . (1956). On respiratory impairment in cancer cells. Science 124: 269–270.

    CAS  Google Scholar 

  • Westerheide SD, Morimoto RI . (2005). Heat shock response modulators as therapeutic tools for diseases of protein conformation. J Biol Chem 280: 33097–33100.

    Article  CAS  Google Scholar 

  • Yarden Y, Sliwkowski MX . (2001). Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2: 127–137.

    Article  CAS  Google Scholar 

  • Zhang H, Berezov A, Wang Q, Zhang G, Drebin J, Murali R et al. (2007). ErbB receptors: from oncogenes to targeted cancer therapies. J Clin Invest 117: 2051–2058.

    Article  CAS  Google Scholar 

  • Zhou X, Tan M, Stone Hawthorne V, Klos KS, Lan KH, Yang Y et al. (2004). Activation of the Akt/mammalian target of rapamycin/4E-BP1 pathway by ErbB2 overexpression predicts tumor progression in breast cancers. Clin Cancer Res 10: 6779–6788.

    Article  CAS  Google Scholar 

  • Zu XL, Guppy M . (2004). Cancer metabolism: facts, fantasy, and fiction. Biochem Biophys Res Commun 313: 459–465.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Ivor Benjamin for the HSF1 MEFs; Dr Jianrong Lu, Dr Adam Riker and Dr Laurie Owen for reading the article; Ms Amy Brown for editorial assistance; Dr June Ayling, Dr Robert Laush and Ms Judy Miller for assistance with equipments. We are grateful for the support from The Vincent F Kilborn, Jr. Cancer Research Foundation (M Tan) and from the Radiumhospitalets Legater Award Project 334003 (M Tan and O Fodstad).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Tan.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y., Zhou, M., Liu, H. et al. Upregulation of lactate dehydrogenase A by ErbB2 through heat shock factor 1 promotes breast cancer cell glycolysis and growth. Oncogene 28, 3689–3701 (2009). https://doi.org/10.1038/onc.2009.229

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.229

Keywords

This article is cited by

Search

Quick links