Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

The HIF1α-inducible pro-cell death gene BNIP3 is a novel target of SIM2s repression through cross-talk on the hypoxia response element

Abstract

The short isoform of single-minded 2 (SIM2s), a basic helix–loop–helix/PAS (bHLH/PAS) transcription factor, is upregulated in pancreatic and prostate tumours; however, a mechanistic role for SIM2s in these cancers is unknown. Microarray studies in prostate DU145 cells identified the pro-cell death gene, BNIP3 (Bcl-2/adenovirus E1B 19 kDa interacting protein 3), as a novel putative target of SIM2s repression. Further validation showed BNIP3 repression in several prostate and pancreatic carcinoma-derived cell lines with ectopic expression of human SIM2s. BNIP3 levels are enhanced in prostate carcinoma cells upon short interfering (si)RNA-mediated knockdown of endogenous SIM2s. Chromatin immunoprecipitation and promoter studies show that SIM2s represses BNIP3 through its activities at the proximal promoter hypoxia response element (HRE), the site through which the bHLH/PAS family member, hypoxia-inducible factor 1α (HIF1α), induces BNIP3. SIM2s attenuates BNIP3 hypoxic induction via the HRE, and increased hypoxic induction of BNIP3 occurs with siRNA knockdown of endogenous SIM2s in prostate PC3AR+ cells. BNIP3 is implicated in hypoxia-induced cell death processes. Prolonged treatment of PC3AR+ cells with hypoxia mimetics, DP and DMOG, confers hypoxia-induced autophagy, measured by enhanced LC3-II levels and SQSTM1/p62 turnover. We show that PC3AR+ cells expressing ectopic SIM2s have enhanced survival in these conditions. Induction of LC3-II and turnover of SQSTM1/p62 are attenuated in PC3AR+/SIM2s DMOG and hypoxia-treated cells, suggesting that SIM2s may attenuate autophagic cell death processes, perhaps through BNIP3 repression. These data show, for the first time, SIM2s cross-talk on an endogenous HRE. SIM2s' functional interference with HIF1α activities on BNIP3 may indicate a novel role for SIM2s in promoting tumourigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

bHLH/PAS:

basic helix–loop–helix/PAS

BNIP3:

Bcl-2/adenovirus E1B 19 kDa interacting protein 3

HRE:

hypoxia response element

ARNT:

aryl hydrocarbon receptor nuclear translocator

RT–PCR:

reverse transcription–PCR

ChIP:

chromatin immunoprecipitation

DMOG:

dimethyloxallyl glycine

DP:

dipyridyl

References

  • Abe T, Toyota M, Suzuki H, Murai M, Akino K, Ueno M et al. (2005). Upregulation of BNIP3 by 5-aza-2′-deoxycytidine sensitizes pancreatic cancer cells to hypoxia-mediated cell death. J Gastroenterol 40: 504–510.

    Article  CAS  PubMed  Google Scholar 

  • Akada M, Crnogorac-Jurcevic T, Lattimore S, Mahon P, Lopes R, Sunamura M et al. (2005). Intrinsic chemoresistance to gemcitabine is associated with decreased expression of BNIP3 in pancreatic cancer. Clin Cancer Res 11: 3094–3101.

    Article  CAS  PubMed  Google Scholar 

  • Aleman MJ, DeYoung MP, Tress M, Keating P, Perry GW, Narayanan R . (2005). Inhibition of Single Minded 2 gene expression mediates tumor-selective apoptosis and differentiation in human colon cancer cells. Proc Natl Acad Sci USA 102: 12765–12770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azad MB, Chen Y, Henson ES, Cizeau J, McMillan-Ward E, Israels SJ et al. (2008). Hypoxia induces autophagic cell death in apoptosis-competent cells through a mechanism involving BNIP3. Autophagy 4: 195–204.

    Article  CAS  PubMed  Google Scholar 

  • Bacon AL, Fox S, Turley H, Harris AL . (2007). Selective silencing of the hypoxia-inducible factor 1 target gene BNIP3 by histone deacetylation and methylation in colorectal cancer. Oncogene 26: 132–141.

    Article  CAS  PubMed  Google Scholar 

  • Boyd JM, Malstrom S, Subramanian T, Venkatesh LK, Schaeper U, Elangovan B et al. (1994). Adenovirus E1B 19 kDa and Bcl-2 proteins interact with a common set of cellular proteins. Cell 79: 341–351.

    Article  CAS  PubMed  Google Scholar 

  • Bruick RK . (2000). Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. Proc Natl Acad Sci USA 97: 9082–9087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burton TR, Gibson SB . (2009). The role of Bcl-2 family member BNIP3 in cell death and disease: NIPping at the heels of cell death. Cell Death Differ 16: 515–523.

    Article  CAS  PubMed  Google Scholar 

  • Chandran U, Dhir R, Ma C, Michalopoulos G, Becich M, Gilbertson J . (2005). Differences in gene expression in prostate cancer, normal appearing prostate tissue adjacent to cancer and prostate tissue from cancer free organ donors. BMC Cancer 5: 45.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chrast R, Scott HS, Chen H, Kudoh J, Rossier C, Minoshima S et al. (1997). Cloning of two human homologs of the Drosophila single-minded gene SIM1 on chromosome 6q and SIM2 on 21q within the Down syndrome chromosomal region. Genome Res 7: 615–624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daido S, Kanzawa T, Yamamoto A, Takeuchi H, Kondo Y, Kondo S . (2004). Pivotal role of the cell death factor BNIP3 in ceramide-induced autophagic cell death in malignant glioma cells. Cancer Res 64: 4286–4293.

    Article  CAS  PubMed  Google Scholar 

  • de Angelis PM, Fjell B, Kravik KL, Haug T, Tunheim SH, Reichelt W et al. (2004). Molecular characterizations of derivatives of HCT116 colorectal cancer cells that are resistant to the chemotherapeutic agent 5-fluorouracil. Int J Oncol 24: 1279–1288.

    CAS  PubMed  Google Scholar 

  • DeYoung MP, Scheurle D, Damania H, Zylberberg C, Narayanan R . (2002). Down's syndrome-associated single minded gene as a novel tumor marker. Anticancer Res 22: 3149–3157.

    CAS  PubMed  Google Scholar 

  • DeYoung MP, Tress M, Narayanan R . (2003a). Identification of Down's syndrome critical locus gene SIM2-s as a drug therapy target for solid tumors. Proc Natl Acad Sci USA 100: 4760–4765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeYoung MP, Tress M, Narayanan R . (2003b). Down's syndrome-associated Single Minded 2 gene as a pancreatic cancer drug therapy target. Cancer Lett 200: 25–31.

    Article  CAS  PubMed  Google Scholar 

  • Drabsch Y, Hugo H, Zhang R, Dowhan DH, Miao YR, Gewirtz AM et al. (2007). Mechanism of and requirement for estrogen-regulated MYB expression in estrogen-receptor-positive breast cancer cells. Proc Natl Acad Sci USA 104: 13762–13767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ema M, Morita M, Ikawa S, Tanaka M, Matsuda Y, Gotoh O et al. (1996b). Two new members of the murine Sim gene family are transcriptional repressors and show different expression patterns during mouse embryogenesis. Mol Cell Biol 16: 5865–5875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erkan M, Kleeff J, Esposito I, Giese T, Ketterer K, Buchler MW et al. (2005). Loss of BNIP3 expression is a late event in pancreatic cancer contributing to chemoresistance and worsened prognosis. Oncogene 24: 4421–4432.

    Article  CAS  PubMed  Google Scholar 

  • Goshu E, Jin H, Fasnacht R, Sepenski M, Michaud JL, Fan CM . (2002). Sim2 mutants have developmental defects not overlapping with those of Sim1 mutants. Mol Cell Biol 22: 4147–4157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halvorsen OJ, Rostad K, Oyan AM, Puntervoll H, Bo TH, Stordrange L et al. (2007). Increased expression of SIM2-s protein is a novel marker of aggressive prostate cancer. Clin Cancer Res 13: 892–897.

    Article  CAS  PubMed  Google Scholar 

  • Ishiguro M, Iida S, Uetake H, Morita S, Makino H, Kato K et al. (2007). Effect of combined therapy with low-dose 5-aza-2′-deoxycytidine and irinotecan on colon cancer cell line HCT-15. Ann Surg Oncol 14: 1752–1762.

    Article  PubMed  Google Scholar 

  • Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P et al. (2008). Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321: 1801–1806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kewley RJ, Whitelaw ML, Chapman-Smith A . (2004). The mammalian basic helix-loop-helix/PAS family of transcriptional regulators. Int J Biochem Cell Biol 36: 189–204.

    Article  CAS  PubMed  Google Scholar 

  • Kwak HI, Gustafson T, Metz RP, Laffin B, Schedin P, Porter WW . (2007). Inhibition of breast cancer growth and invasion by single-minded 2s. Carcinogenesis 28: 259–266.

    Article  CAS  PubMed  Google Scholar 

  • Laffin B, Wellberg E, Kwak HI, Burghardt RC, Metz RP, Gustafson T et al. (2008). Loss of singleminded-2s in the mouse mammary gland induces an epithelial-mesenchymal transition associated with up-regulation of slug and matrix metalloprotease 2. Mol Cell Biol 28: 1936–1946.

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Paik SG . (2006). Regulation of BNIP3 in normal and cancer cells. Mol Cells 21: 1–6.

    Article  CAS  PubMed  Google Scholar 

  • Levine B . (2007). Cell biology: autophagy and cancer. Nature 446: 745–747.

    Article  CAS  PubMed  Google Scholar 

  • Mahon PC, Baril P, Bhakta V, Chelala C, Caulee K, Harada T et al. (2007). S100A4 contributes to the suppression of BNIP3 expression, chemoresistance, and inhibition of apoptosis in pancreatic cancer. Cancer Res 67: 6786–6795.

    Article  CAS  PubMed  Google Scholar 

  • Maiuri MC, Zalckvar E, Kimchi A, Kroemer G . (2007). Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8: 741–752.

    Article  CAS  PubMed  Google Scholar 

  • Mellor HR, Harris AL . (2007). The role of the hypoxia-inducible BH3-only proteins BNIP3 and BNIP3L in cancer. Cancer Metastasis Rev 26: 553–566.

    Article  CAS  PubMed  Google Scholar 

  • Metz RP, Kwak HI, Gustafson T, Laffin B, Porter WW . (2006). Differential transcriptional regulation by mouse single-minded 2s. J Biol Chem 281: 10839–10848.

    Article  CAS  PubMed  Google Scholar 

  • Mizushima N, Yoshimori T . (2007). How to interpret LC3 immunoblotting. Autophagy 3: 542–545.

    Article  CAS  PubMed  Google Scholar 

  • Moffett P, Reece M, Pelletier J . (1997). The murine Sim-2 gene product inhibits transcription by active repression and functional interference. Mol Cell Biol 17: 4933–4947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller P, Janovjak H, Miserez AR, Dobbie Z . (2002). Processing of gene expression data generated by quantitative real-time RT-PCR. Biotechniques 32: 1372-4, 1376, 1378-9.

    Google Scholar 

  • Murai M, Toyota M, Suzuki H, Satoh A, Sasaki Y, Akino K et al. (2005). Aberrant methylation and silencing of the BNIP3 gene in colorectal and gastric cancer. Clin Cancer Res 11: 1021–1027.

    CAS  PubMed  Google Scholar 

  • Okami J, Simeone DM, Logsdon CD . (2004). Silencing of the hypoxia-inducible cell death protein BNIP3 in pancreatic cancer. Cancer Res 64: 5338–5346.

    Article  CAS  PubMed  Google Scholar 

  • Probst MR, Fan CM, Tessier-Lavigne M, Hankinson O . (1997). Two murine homologs of the Drosophila single-minded protein that interact with the mouse aryl hydrocarbon receptor nuclear translocator protein. J Biol Chem 272: 4451–4457.

    Article  CAS  PubMed  Google Scholar 

  • Pursiheimo JP, Rantanen K, Heikkinen PT, Johansen T, Jaakkola PM . (2009). Hypoxia-activated autophagy accelerates degradation of SQSTM1/p62. Oncogene 28: 334–344.

    Article  CAS  PubMed  Google Scholar 

  • Richard DE, Berra E, Gothie E, Roux D, Pouyssegur J . (1999). p42/p44 mitogen-activated protein kinases phosphorylate hypoxia-inducible factor 1alpha (HIF-1alpha) and enhance the transcriptional activity of HIF-1. J Biol Chem 274: 32631–32637.

    Article  CAS  PubMed  Google Scholar 

  • Semenza GL . (2000). HIF-1 and human disease: one highly involved factor. Genes Dev 14: 1983–1991.

    CAS  PubMed  Google Scholar 

  • Shamblott MJ, Bugg EM, Lawler AM, Gearhart JD . (2002). Craniofacial abnormalities resulting from targeted disruption of the murine Sim2 gene. Dev Dyn 224: 373–380.

    Article  CAS  PubMed  Google Scholar 

  • Sowter HM, Ratcliffe PJ, Watson P, Greenberg AH, Harris AL . (2001). HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors. Cancer Res 61: 6669–6673.

    CAS  PubMed  Google Scholar 

  • Su AI, Cooke MP, Ching KA, Hakak Y, Walker JR, Wiltshire T et al. (2002). Large-scale analysis of the human and mouse transcriptomes. Proc Natl Acad Sci USA 99: 4465–4470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tracy K, Dibling BC, Spike BT, Knabb JR, Schumacker P, Macleod KF . (2007a). BNIP3 is an RB/E2F target gene required for hypoxia-induced autophagy. Mol Cell Biol 27: 6229–6242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varambally S, Yu J, Laxman B, Rhodes DR, Mehra R, Tomlins SA et al. (2005). Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression. Cancer Cell 8: 393–406.

    Article  CAS  PubMed  Google Scholar 

  • Woods S, Farrall A, Procko C, Whitelaw ML . (2008). The bHLH/Per-Arnt-Sim transcription factor SIM2 regulates muscle transcript myomesin2 via a novel, non-canonical E-box sequence. Nucleic Acids Res 36: 3716–3727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woods SL, Whitelaw ML . (2002). Differential activities of murine single minded 1 (SIM1) and SIM2 on a hypoxic response element. Cross-talk between basic helix-loop-helix/per-Arnt-Sim homology transcription factors. J Biol Chem 277: 10236–10243.

    Article  CAS  PubMed  Google Scholar 

  • Yu YP, Landsittel D, Jing L, Nelson J, Ren B, Liu L et al. (2004). Gene expression alterations in prostate cancer predicting tumor aggression and preceding development of malignancy. J Clin Oncol 22: 2790–2799.

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB et al. (2008). Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 283: 10892–10903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Schmid T, Schnitzer S, Brune B . (2006). Tumor hypoxia and cancer progression. Cancer Lett 237: 10–21.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M van Bekkum and C Bindloss for their kind technical assistance, and Dr S Woods for reagents and critical reading of the manuscript. PC3AR+ cells were a kind gift from Prof W Tilley, Hanson Research Institute, Adelaide, Australia. Tet-inducible lentiviral vectors were a kind gift from Dr S Barry, Children's Health Research Institute, SA, Australia (Drabsch et al., 2007). Anti-HIF1α-CAD antibody was obtained from the laboratory of Prof J Pouysségur, CNRS UMR6543, University of Nice, France (Richard et al., 1999). We acknowledge the contribution of the Australian Cancer Research Foundation for their support of the Adelaide Microarray Facility, Adelaide, Australia, which supplied, processed and analysed the microarrays. This work was supported by grants from the Australian Research Council and the Cancer Council South Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A L Farrall.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farrall, A., Whitelaw, M. The HIF1α-inducible pro-cell death gene BNIP3 is a novel target of SIM2s repression through cross-talk on the hypoxia response element. Oncogene 28, 3671–3680 (2009). https://doi.org/10.1038/onc.2009.228

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.228

Keywords

This article is cited by

Search

Quick links