Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Inhibition of PI-3K restores nuclear p27Kip1 expression in a mouse model of Kras-driven lung cancer

Abstract

Reduced expression of the CDK inhibitor p27Kip1 (p27) in human lung cancer correlates with tumor aggressiveness and poor prognosis. However, the regulation of p27 expression and the role of p27 during lung cancer are poorly understood. Urethane-induced lung tumors in mice frequently harbor mutations in the Kras oncogene, and in this study, we use this model to address the regulation of p27 during tumorigenesis. The Ras effector Akt is known to regulate p27 mRNA abundance by phosphorylating and inactivating the FOXO transcription factors. Phosphorylated Akt and FOXO proteins were both increased in lung tumors, correlating with a reduction in p27 mRNA transcript. Akt also directly phosphorylates p27 and regulates its nuclear/cytoplasmic localization. Tumors showed a reduced nuclear/cytoplasmic ratio of p27 protein, together with an increase in phosphorylated Thr197 p27 in the cytoplasmic pool. Treatment of lung tumor-bearing mice with the phosphoinositol-3 kinase inhibitor LY294002 induced a rapid decrease in phosphorylated Akt and phosphorylated p27, concomitant with an increase in nuclear p27. Germline p27 deficiency accelerated both the growth and malignant progression of urethane-induced lung tumors, and did so in a cell autonomous manner, confirming a causal role of p27 in tumor suppression. These results show that p27 is a potent barrier to the growth and malignant progression of Kras-initiated lung tumors. Further, the reduction of nuclear p27 in tumors is mediated by oncogene signaling pathways, which can be reversed by pharmacological agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Baldassarre G, Belletti B, Nicoloso MS, Schiappacassi M, Vecchione A, Spessotto P et al. (2005). p27(Kip1)-stathmin interaction influences sarcoma cell migration and invasion. Cancer Cell 7: 51–63.

    Article  CAS  PubMed  Google Scholar 

  • Besson A, Assoian RK, Roberts JM . (2004a). Regulation of the cytoskeleton: an oncogenic function for CDK inhibitors? Nat Rev Cancer 4: 948–955.

    Article  CAS  PubMed  Google Scholar 

  • Besson A, Gurian-West M, Chen X, Kelly-Spratt KS, Kemp CJ, Roberts JM . (2006). A pathway in quiescent cells that controls p27/Kip1 stability, subcellular localization, and tumor suppression. Genes Dev 20: 47–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Besson A, Gurian-West M, Schmidt A, Hall A, Roberts JM . (2004b). p27Kip1 modulates cell migration through the regulation of RhoA activation. Genes Dev 18: 862–876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blain SW, Massague J . (2002). Breast cancer banishes p27/Kip1 from the nucleus. Nat Med 8: 1076–1078.

    Article  CAS  PubMed  Google Scholar 

  • Bloom J, Pagano M. . (2003). Deregulated degradation of the cdk inhibitor p27 and malignant transformation. Semin Cancer Biol 13: 41–47.

    Article  CAS  PubMed  Google Scholar 

  • Boehm M, Yoshimoto T, Crook MF, Nallamshetty S, True A, Nabel GJ et al. (2002). A growth factor-dependent nuclear kinase phosphorylates p27(Kip1) and regulates cell cycle progression. EMBO J 21: 3390–3401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Busse D, Doughty RS, Ramsey TT, Russell WE, Price JO, Flanagan WM et al. (2000). Reversible G(1) arrest induced by inhibition of the epidermal growth factor receptor tyrosine kinase requires up-regulation of p27(KIP1) independent of MAPK activity. J Biol Chem 275: 6987–6995.

    Article  CAS  PubMed  Google Scholar 

  • Casaccia-Bonnefil P, Tikoo R, Kiyokawa H, Friedrich Jr V, Chao MV, Koff A . (1997). Oligodendrocyte precursor differentiation is perturbed in the absence of the cyclin-dependent kinase inhibitor p27Kip1. Genes Dev 11: 2335–2346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catzavelos C, Tsao MS, DeBoer G, Bhattacharya N, Shepherd FA, Slingerland JM . (1999). Reduced expression of the cell cycle inhibitor p27Kip1 in non-small cell lung carcinoma: a prognostic factor independent of Ras. Cancer Res 59: 684–688.

    CAS  PubMed  Google Scholar 

  • Chu I, Sun J, Arnaout A, Kahn H, Hanna W, Narod S et al. (2007). p27 phosphorylation by Src regulates inhibition of cyclin E-Cdk2. Cell 128: 281–294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu IM, Hengst L, Slingerland JM . (2008). The Cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy. Nat Rev Cancer 8: 253–267.

    Article  CAS  PubMed  Google Scholar 

  • Connor MK, Kotchetkov R, Cariou S, Resch A, Lupetti R, Beniston RG et al. (2003). CRM1/Ran-mediated nuclear export of p27(Kip1) involves a nuclear export signal and links p27 export and proteolysis. Mol Biol Cell 14: 201–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dijkers PF, Medema RH, Pals C, Banerji L, Thomas NS, Lam EW et al. (2000). Forkhead transcription factor FKHR-L1 modulates cytokine-dependent transcriptional regulation of p27(KIP1). Mol Cell Biol 20: 9138–9148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K et al. (2008). Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455: 1069–1075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fero ML, Randel E, Gurley KE, Roberts JM, Kemp CJ . (1998). The murine gene p27Kip1 is haplo-insufficient for tumour suppression. Nature 396: 177–180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fero ML, Rivkin M, Tasch M, Porter P, Carow CE, Firpo E et al. (1996). A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27-deficient mice. Cell 85: 733–744.

    Article  CAS  PubMed  Google Scholar 

  • Fujita N, Sato S, Tsuruo T . (2003). Phosphorylation of p27Kip1 at threonine 198 by p90 ribosomal protein S6 kinases promotes its binding to 14-3-3 and cytoplasmic localization. J Biol Chem 278: 49254–49260.

    Article  CAS  PubMed  Google Scholar 

  • Grimmler M, Wang Y, Mund T, Cilensek Z, Keidel EM, Waddell MB et al. (2007). Cdk-inhibitory activity and stability of p27Kip1 are directly regulated by oncogenic tyrosine kinases. Cell 128: 269–280.

    Article  CAS  PubMed  Google Scholar 

  • Inui N, Kitagawa K, Miwa S, Hattori T, Chida K, Nakamura H et al. (2003). High expression of Cks1 in human non-small cell lung carcinomas. Biochem Biophys Res Commun 303: 978–984.

    Article  CAS  PubMed  Google Scholar 

  • Kamura T, Hara T, Matsumoto M, Ishida N, Okumura F, Hatakeyama S et al. (2004). Cytoplasmic ubiquitin ligase KPC regulates proteolysis of p27(Kip1) at G1 phase. Nat Cell Biol 6: 1229–1235.

    Article  CAS  PubMed  Google Scholar 

  • Kawamata N, Morosetti R, Miller CW, Park D, Spirin KS, Nakamaki T et al. (1995). Molecular analysis of the cyclin-dependent kinase inhibitor gene p27/Kip1 in human malignancies. Cancer Res 55: 2266–2269.

    CAS  PubMed  Google Scholar 

  • Kiyokawa H, Kineman RD, Manova-Todorova KO, Soares VC, Hoffman ES, Ono M et al. (1996). Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27(Kip1). Cell 85: 721–732.

    Article  CAS  PubMed  Google Scholar 

  • Kossatz U, Vervoorts J, Nickeleit I, Sundberg HA, Arthur JS, Manns MP et al. (2006). C-terminal phosphorylation controls the stability and function of p27kip1. EMBO J 25: 5159–5170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotake Y, Nakayama K, Ishida N, Nakayama KI . (2005). Role of serine 10 phosphorylation in p27 stabilization revealed by analysis of p27 knock-in mice harboring a serine 10 mutation. J Biol Chem 280: 1095–1102.

    Article  CAS  PubMed  Google Scholar 

  • Liang J, Zubovitz J, Petrocelli T, Kotchetkov R, Connor MK, Han K et al. (2002). PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest. Nat Med 8: 1153–1160.

    Article  CAS  PubMed  Google Scholar 

  • Loda M, Cukor B, Tam SW, Lavin P, Fiorentino M, Draetta GF et al. (1997). Increased proteasome-dependent degradation of the cyclin- dependent kinase inhibitor p27 in aggressive colorectal carcinomas. Nat Med 3: 231–234.

    Article  CAS  PubMed  Google Scholar 

  • Malkinson AM . (2001). Primary lung tumors in mice as an aid for understanding, preventing, and treating human adenocarcinoma of the lung. Lung Cancer 32: 265–279.

    Article  CAS  PubMed  Google Scholar 

  • Martins CP, Brown-Swigart L, Evan GI . (2006). Modeling the therapeutic efficacy of p53 restoration in tumors. Cell 127: 1323–1334.

    Article  CAS  PubMed  Google Scholar 

  • McAllister SS, Becker-Hapak M, Pintucci G, Pagano M, Dowdy SF . (2003). Novel p27(kip1) C-terminal scatter domain mediates Rac-dependent cell migration independent of cell cycle arrest functions. Mol Cell Biol 23: 216–228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medema RH, Kops GJ, Bos JL, Burgering BM . (2000). AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature 404: 782–787.

    Article  CAS  PubMed  Google Scholar 

  • Motti ML, Califano D, Troncone G, De MC, Migliaccio I, Palmieri E et al. (2005). Complex regulation of the cyclin-dependent kinase inhibitor p27kip1 in thyroid cancer cells by the PI3K/AKT pathway: regulation of p27kip1 expression and localization. Am J Pathol 166: 737–749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Motti ML, De MC, Califano D, Fusco A, Viglietto G . (2004). Akt-dependent T198 phosphorylation of cyclin-dependent kinase inhibitor p27kip1 in breast cancer. Cell Cycle 3: 1074–1080.

    Article  CAS  PubMed  Google Scholar 

  • Nakayama K, Ishida N, Shirane M, Inomata A, Inoue T, Shishido N et al. (1996). Mice lacking p27 display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 85: 707–720.

    Article  CAS  PubMed  Google Scholar 

  • Philipp J, Vo K, Gurley KE, Seidel K, Kemp CJ . (1999). Tumor suppression by p27/Kip1 and p21/Cip1 during chemically induced skin carcinogenesis. Oncogene 18: 4689–4698.

    Article  CAS  PubMed  Google Scholar 

  • Philipp-Staheli J, Kim KH, Liggitt D, Gurley KE, Longton G, Kemp CJ . (2004). Distinct roles for p53, p27Kip1, and p21Cip1 during tumor development. Oncogene 23: 905–913.

    Article  CAS  PubMed  Google Scholar 

  • Philipp-Staheli J, Kim KH, Payne SR, Gurley KE, Liggitt D, Longton G et al. (2002). Pathway-specific tumor suppression. Reduction of p27 accelerates gastrointestinal tumorigenesis in Apc mutant mice, but not in Smad3 mutant mice. Cancer Cell 1: 355–368.

    Article  PubMed  Google Scholar 

  • Philipp-Staheli J, Payne SR, Kemp CJ . (2001). p27(Kip1): regulation and function of a haploinsufficient tumor suppressor and its misregulation in cancer. Exp Cell Res 264: 148–168.

    Article  CAS  PubMed  Google Scholar 

  • Ponce-Castaneda MV, Lee MH, Latres E, Polyak K, Lacombe L, Montgomery K et al. (1995). p27Kip1: chromosomal mapping to 12p12-12p13.1 and absence of mutations in human tumors. Cancer Res 55: 1211–1214.

    CAS  PubMed  Google Scholar 

  • Sa G, Stacey DW . (2004). P27 expression is regulated by separate signaling pathways, downstream of Ras, in each cell cycle phase. Exp Cell Res 300: 427–439.

    Article  CAS  PubMed  Google Scholar 

  • Schiappacassi M, Lovat F, Canzonieri V, Belletti B, Berton S, Di SD et al. (2008). p27Kip1 expression inhibits glioblastoma growth, invasion, and tumor-induced neoangiogenesis. Mol Cancer Ther 7: 1164–1175.

    Article  CAS  PubMed  Google Scholar 

  • Schreiber E, Matthias P, Muller MM, Schaffner W . (1989). Rapid detection of octamer binding proteins with ‘mini-extracts’, prepared from a small number of cells. Nucleic Acids Res 17: 6419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaffer DR, Viale A, Ishiwata R, Leversha M, Olgac S, Manova K et al. (2005). Evidence for a p27 tumor suppressive function independent of its role regulating cell proliferation in the prostate. Proc Natl Acad Sci USA 102: 210–215.

    Article  CAS  PubMed  Google Scholar 

  • Sheaff RJ, Groudine M, Gordon M, Roberts JM, Clurman BE . (1997). Cyclin E-CDK2 is a regulator of p27Kip1. Genes Dev 11: 1464–1478.

    Article  CAS  PubMed  Google Scholar 

  • Shin I, Rotty J, Wu FY, Arteaga CL . (2005). Phosphorylation of p27Kip1 at Thr-157 interferes with its association with importin alpha during G1 and prevents nuclear re-entry. J Biol Chem 280: 6055–6063.

    Article  CAS  PubMed  Google Scholar 

  • Singhal S, Vachani A, ntin-Ozerkis D, Kaiser LR, Albelda SM . (2005). Prognostic implications of cell cycle, apoptosis, and angiogenesis biomarkers in non-small cell lung cancer: a review. Clin Cancer Res 11: 3974–3986.

    Article  CAS  PubMed  Google Scholar 

  • Susaki E, Nakayama KI . (2007). Multiple mechanisms for p27(Kip1) translocation and degradation. Cell Cycle 6: 3015–3020.

    Article  CAS  PubMed  Google Scholar 

  • Tomoda K, Kubota Y, Kato J . (1999). Degradation of the cyclin-dependent-kinase inhibitor p27(Kip1) is instigated by Jab1. Nature 398: 160–165.

    Article  CAS  PubMed  Google Scholar 

  • Tong W, Kiyokawa H, Soos TJ, Park MS, Soares VC, Manova K et al. (1998). The absence of p27Kip1, an inhibitor of G1 cyclin-dependent kinases, uncouples differentiation and growth arrest during the granulosa->luteal transition. Cell Growth Differ 9: 787–794.

    CAS  PubMed  Google Scholar 

  • Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grimm J, Lintault L et al. (2007). Restoration of p53 function leads to tumour regression in vivo. Nature 445: 661–665.

    Article  CAS  PubMed  Google Scholar 

  • Viglietto G, Motti ML, Bruni P, Melillo RM, D'Alessio A, Califano D et al. (2002). Cytoplasmic relocalization and inhibition of the cyclin-dependent kinase inhibitor p27(Kip1) by PKB/Akt-mediated phosphorylation in breast cancer. Nat Med 8: 1136–1144.

    Article  CAS  PubMed  Google Scholar 

  • Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V et al. (2007). Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445: 656–660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • You M, Candrian U, Maronpot RR, Stoner GD, Anderson MW . (1989). Activation of the Ki-ras protooncogene in spontaneously occurring and chemically induced lung tumors of the strain A mouse. Proc Natl Acad Sci USA 86: 3070–3074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan Y, Qin L, Liu D, Wu RC, Mussi P, Zhou S et al. (2007). Genetic screening reveals an essential role of p27kip1 in restriction of breast cancer progression. Cancer Res 67: 8032–8042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zindy F, Cunningham JJ, Sherr CJ, Jogal S, Smeyne RJ, Roussel MF . (1999). Postnatal neuronal proliferation in mice lacking Ink4d and Kip1 inhibitors of cyclin-dependent kinases. Proc Natl Acad Sci USA 96: 13462–13467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by a NIH T32 CA8046 Interdisciplinary Training Grant in Cancer Research (KSK-S), and an ACS Research Scholar Award and a NIH R01 Research Grant (CJK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C J Kemp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelly-Spratt, K., Philipp-Staheli, J., Gurley, K. et al. Inhibition of PI-3K restores nuclear p27Kip1 expression in a mouse model of Kras-driven lung cancer. Oncogene 28, 3652–3662 (2009). https://doi.org/10.1038/onc.2009.226

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.226

Keywords

This article is cited by

Search

Quick links