Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Inhibition of epithelial to mesenchymal transition in metastatic prostate cancer cells by the novel proteasome inhibitor, NPI-0052: pivotal roles of Snail repression and RKIP induction

Abstract

Metastasis is associated with the loss of epithelial features and the acquisition of mesenchymal characteristics and invasive properties by tumor cells, a process known as epithelial to mesenchymal transition (EMT). Snail expression, through nuclear factor (NF)-κB activation, is an EMT determinant. The proteasome inhibitor, NPI-0052, induces the metastasis tumor suppressor/immune surveillance cancer gene, Raf kinase inhibitor protein (RKIP), via NF-κB inhibition. We hypothesized that NPI-0052 may inhibit Snail expression and, consequently, the metastatic phenotype in DU-145 prostate cancer cells. Cell treatment with NPI-0052 induced E-cadherin and inhibited Snail expression and both tumor cell invasion and migration. Inhibition of Snail inversely correlated with the induction of RKIP. The underlying mechanism of NPI-0052-induced inhibition of the metastatic phenotype was corroborated by: (1) treatment with Snail siRNA in DU-145 inhibited EMT and, in contrast, overexpression of Snail in the nonmetastatic LNCaP cells induced EMT, (2) NPI-0052-induced repression of Snail via inhibition of NF-κB was corroborated by the specific NF-κB inhibitor DHMEQ and (3) RKIP overexpression mimicked NPI-0052 in the inhibition of Snail and EMT. These findings demonstrate, for the first time, the role of NPI-0052 in the regulation of EMT via inhibition of NF-κB and Snail and induction of RKIP.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

DHMEQ:

dehydroxymethylepoxyquinomicin

FBS:

fetal bovine serum

FITC:

fluorescein isothiocyanate

GAPDH:

glyceraldehydes-3-phosphate dehydrogenase (G-3-PDH)

NF-κB:

nuclear factor-kB

PBS:

phosphate-buffered saline

RFU:

relative fluorescence units

RPE:

R-phycoerythrin

References

  • Ahn KS, Sethi G, Chao TH, Neuteboom ST, Chaturvedi MM, Palladino MA et al. (2007). Salinosporamide A (NPI-0052) potentiates apoptosis, suppresses osteoclastogenesis, and inhibits invasion through down-modulation of NF-kappaB regulated gene products. Blood 110: 2286–2295.

    Article  CAS  Google Scholar 

  • Barbera MJ, Puig I, Dominguez D, Julien-Grille S, Guaita-Esteruelas S, Peiro S et al. (2004). Regulation of Snail transcription during epithelial to mesenchymal transition of tumor cells. Oncogene 23: 7345–7354.

    Article  CAS  Google Scholar 

  • Baritaki S, Katsman A, Chatterjee D, Yeung KC, Spandidos DA, Bonavida B . (2007). Regulation of tumor cell sensitivity to TRAIL-induced apoptosis by the metastatic suppressor Raf kinase inhibitor protein via Yin Yang 1 inhibition and death receptor 5 up-regulation. J Immunol 179: 5441–5453.

    Article  CAS  Google Scholar 

  • Baritaki S, Suzuki E, Umezawa K, Spandidos DA, Berenson J, Daniels TR et al. (2008). Inhibition of Yin Yang 1-dependent repressor activity of DR5 transcription and expression by the novel proteasome inhibitor NPI-0052 contributes to its TRAIL-enhanced apoptosis in cancer cells. J Immunol 180: 6199–6210.

    Article  CAS  Google Scholar 

  • Beach S, Tang H, Park S, Dhillon AS, Keller ET, Kolch W et al. (2008). Snail is a repressor of RKIP transcription in metastatic prostate cancer cells. Oncogene 27: 2243–2248.

    Article  CAS  Google Scholar 

  • Blanco MJ, Moreno-Bueno G, Sarrio D, Locascio A, Cano A, Palacios J et al. (2002). Correlation of Snail expression with histological grade and lymph node status in breast carcinomas. Oncogene 21: 3241–3246.

    Article  CAS  Google Scholar 

  • Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG et al. (2000). The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2: 76–83.

    Article  CAS  Google Scholar 

  • Chatterjee D, Bai Y, Wang Z, Beach S, Mott S, Roy R et al. (2004). RKIP sensitizes prostate and breast cancer cells to drug-induced apoptosis. J Biol Chem 279: 17515–17523.

    Article  CAS  Google Scholar 

  • Chauhan D, Catley L, Li G, Podar K, Hideshima T, Velankar M et al. (2005). A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib. Cancer Cell 8: 407–419.

    Article  CAS  Google Scholar 

  • Chauhan D, Hideshima T, Anderson KC . (2006). A novel proteasome inhibitor NPI-0052 as an anticancer therapy. Br J Cancer 95: 961–965.

    Article  CAS  Google Scholar 

  • Chauhan D, Singh A, Brahmandam M, Podar K, Hideshima T, Richardson P et al. (2008). Combination of proteasome inhibitors bortezomib and NPI-0052 trigger in vivo synergistic cytotoxicity in multiple myeloma. Blood 111: 1654–1664.

    Article  CAS  Google Scholar 

  • Condeelis J, Pollard JW . (2006). Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124: 263–266.

    Article  CAS  Google Scholar 

  • Cusack Jr JC, Liu R, Xia L, Chao TH, Pien C, Niu W et al. (2006). NPI-0052 enhances tumoricidal response to conventional cancer therapy in a colon cancer model. Clin Cancer Res 12: 6758–6764.

    Article  CAS  Google Scholar 

  • Dangi-Garimella S, Yun J, Eves EM, Newman M, Erkeland SJ, Hammond SM et al. (2009). Raf kinase inhibitory protein suppresses a metastasis signalling cascade involving LIN28 and let-7. EMBO J 28: 347–358.

    Article  CAS  Google Scholar 

  • De Craene B, van Roy F, Berx G . (2005). Unraveling signalling cascades for the Snail family of transcription factors. Cell Signal 17: 535–547.

    Article  CAS  Google Scholar 

  • Dominguez D, Montserrat-Sentis B, Virgos-Soler A, Guaita S, Grueso J, Porta M et al. (2003). Phosphorylation regulates the subcellular location and activity of the snail transcriptional repressor. Mol Cell Biol 23: 5078–5089.

    Article  CAS  Google Scholar 

  • Elloul S, Silins I, Trope CG, Benshushan A, Davidson B, Reich R . (2006). Expression of E-cadherin transcriptional regulators in ovarian carcinoma. Virchows Arch 449: 520–528.

    Article  CAS  Google Scholar 

  • Fenical W, Jensen PR, Palladino MA, Lam KS, Lloyd GK, Potts BC . (2009). Discovery and development of the anticancer agent salinosporamide A (NPI-0052). Bioorg Med Chem 17: 2175–2180.

    Article  CAS  Google Scholar 

  • Fu Z, Kitagawa Y, Shen R, Shah R, Mehra R, Rhodes D et al. (2006). Metastasis suppressor gene Raf kinase inhibitor protein (RKIP) is a novel prognostic marker in prostate cancer. Prostate 66: 248–256.

    Article  CAS  Google Scholar 

  • Fu Z, Smith PC, Zhang L, Rubin MA, Dunn RL, Yao Z et al. (2003). Effects of raf kinase inhibitor protein expression on suppression of prostate cancer metastasis. J Natl Cancer Inst 95: 878–889.

    Article  CAS  Google Scholar 

  • Garcia de Herreros A . (2001) In: Common Molecules in Development and Carcinogenesis. Juan March Foundation: Madrid, Spain.

    Google Scholar 

  • Granovsky AE, Rosner MR . (2008). Raf kinase inhibitory protein: a signal transduction modulator and metastasis suppressor. Cell Res 18: 452–457.

    Article  CAS  Google Scholar 

  • Hagan S, Al-Mulla F, Mallon E, Oien K, Ferrier R, Gusterson B et al. (2005). Reduction of Raf-1 kinase inhibitor protein expression correlates with breast cancer metastasis. Clin Cancer Res 11: 7392–7397.

    Article  CAS  Google Scholar 

  • Inoue J, Gohda J, Akiyama T, Semba K . (2007). NF-kappaB activation in development and progression of cancer. Cancer Sci 98: 268–274.

    Article  CAS  Google Scholar 

  • Jiao W, Miyazaki K, Kitajima Y . (2002). Inverse correlation between E-cadherin and Snail expression in hepatocellular carcinoma cell lines in vitro and in vivo. Br J Cancer 86: 98–101.

    Article  CAS  Google Scholar 

  • Julien S, Puig I, Caretti E, Bonaventure J, Nelles L, van Roy F et al. (2007). Activation of NF-kappaB by Akt upregulates Snail expression and induces epithelium mesenchyme transition. Oncogene 26: 7445–7456.

    Article  CAS  Google Scholar 

  • Katsman A, Umezawa K, Bonavida B . (2007). Reversal of resistance to cytotoxic cancer therapies: DHMEQ as a chemo-sensitizing and immuno-sensitizing agent. Drug Resist Updat 10: 1–12.

    Article  CAS  Google Scholar 

  • LaBonne C, Bronner-Fraser M . (2000). Snail-related transcriptional repressors are required in Xenopus for both the induction of the neural crest and its subsequent migration. Dev Biol 221: 195–205.

    Article  CAS  Google Scholar 

  • Miller CP, Ban K, Dujka ME, McConkey DJ, Munsell M, Palladino M et al. (2007). NPI-0052, a novel proteasome inhibitor, induces caspase-8 and ROS-dependent apoptosis alone and in combination with HDAC inhibitors in leukemia cells. Blood 110: 267–277.

    Article  CAS  Google Scholar 

  • Minoo P, Zlobec I, Baker K, Tornillo L, Terracciano L, Jass JR et al. (2007). Loss of raf-1 kinase inhibitor protein expression is associated with tumor progression and metastasis in colorectal cancer. Am J Clin Pathol 127: 820–827.

    Article  Google Scholar 

  • Nieto MA . (2002). The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol 3: 155–166.

    Article  CAS  Google Scholar 

  • Odabaei G, Chatterjee D, Jazirehi AR, Goodglick L, Yeung K, Bonavida B . (2004). Raf-1 kinase inhibitor protein: structure, function, regulation of cell signaling, and pivotal role in apoptosis. Adv Cancer Res 91: 169–200.

    Article  CAS  Google Scholar 

  • Olmeda D, Jorda M, Peinado H, Fabra A, Cano A . (2007). Snail silencing effectively suppresses tumour growth and invasiveness. Oncogene 26: 1862–1874.

    Article  CAS  Google Scholar 

  • Pantel K, Brakenhoff RH, Brandt B . (2008). Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nat Rev Cancer 8: 329–340.

    Article  CAS  Google Scholar 

  • Peinado H, Ballestar E, Esteller M, Cano A . (2004). Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. Mol Cell Biol 24: 306–319.

    Article  CAS  Google Scholar 

  • Roccaro AM, Leleu X, Sacco A, Jia X, Melhem M, Moreau AS et al. (2008). Dual targeting of the proteasome regulates survival and homing in Waldenstrom macroglobulinemia. Blood 111: 4752–4763.

    Article  CAS  Google Scholar 

  • Rosivatz E, Becker I, Specht K, Fricke E, Luber B, Busch R et al. (2002). Differential expression of the epithelial-mesenchymal transition regulators snail, SIP1, and twist in gastric cancer. Am J Pathol 161: 1881–1891.

    Article  CAS  Google Scholar 

  • Ruiz S, Krupnik Y, Keating M, Chandra J, Palladino M, McConkey D . (2006). The proteasome inhibitor NPI-0052 is a more effective inducer of apoptosis than bortezomib in lymphocytes from patients with chronic lymphocytic leukemia. Mol Cancer Ther 5: 1836–1843.

    Article  CAS  Google Scholar 

  • Shook D, Keller R . (2003). Mechanisms, mechanics and function of epithelial-mesenchymal transitions in early development. Mech Dev 120: 1351–1383.

    Article  CAS  Google Scholar 

  • Sloss CM, Wang F, Liu R, Xia L, Houston M, Ljungman D et al. (2008). Proteasome inhibition activates epidermal growth factor receptor (EGFR) and EGFR-independent mitogenic kinase signaling pathways in pancreatic cancer cells. Clin Cancer Res 14: 5116–5123.

    Article  CAS  Google Scholar 

  • Steeg PS . (2006). Tumor metastasis: mechanistic insights and clinical challenges. Nat Med 12: 895–904.

    Article  CAS  Google Scholar 

  • Sterz J, von Metzler I, Hahne JC, Lamottke B, Rademacher J, Heider U et al. (2008). The potential of proteasome inhibitors in cancer therapy. Expert Opin Investig Drugs 17: 879–895.

    Article  CAS  Google Scholar 

  • Thiery JP, Sleeman JP . (2006). Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 7: 131–142.

    Article  CAS  Google Scholar 

  • van de Stolpe A, Caldenhoven E, Stade BG, Koenderman L, Raaijmakers JA, Johnson JP et al. (1994). 12-O-tetradecanoylphorbol-13-acetate- and tumor necrosis factor alpha-mediated induction of intercellular adhesion molecule-1 is inhibited by dexamethasone. Functional analysis of the human intercellular adhesion molecular-1 promoter. J Biol Chem 269: 6185–6192.

    CAS  PubMed  Google Scholar 

  • Yang MH, Chang SY, Chiou SH, Liu CJ, Chi CW, Chen PM et al. (2007). Overexpression of NBS1 induces epithelial-mesenchymal transition and co-expression of NBS1 and Snail predicts metastasis of head and neck cancer. Oncogene 26: 1459–1467.

    Article  CAS  Google Scholar 

  • Yeung K, Seitz T, Li S, Janosch P, McFerran B, Kaiser C et al. (1999). Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP. Nature 401: 173–177.

    Article  CAS  Google Scholar 

  • Yeung KC, Rose DW, Dhillon AS, Yaros D, Gustafsson M, Chatterjee D et al. (2001). Raf kinase inhibitor protein interacts with NF-kappaB-inducing kinase and TAK1 and inhibits NF-kappaB activation. Mol Cell Biol 21: 7207–7217.

    Article  CAS  Google Scholar 

  • Yokoyama K, Kamata N, Hayashi E, Hoteiya T, Ueda N, Fujimoto R et al. (2001). Reverse correlation of E-cadherin and snail expression in oral squamous cell carcinoma cells in vitro. Oral Oncol 37: 65–71.

    Article  CAS  Google Scholar 

  • Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M et al. (2004). Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol 6: 931–940.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in part by the NIH/NCI research supplements CA107023-02S1, CA057152-13S1 and by Bodossaki Foundation postdoctoral fellowship (SB). We thank Chau Tran, Jose A Rodriguez and Haiming Chen for their help in the migration and invasion assays and the immunofluorescence microscopy. We also thank Dr Kazuo Umezawa for providing us with the NF-κB inhibitor DHMEQ. In addition, we thank Tiffany Chin, Katherine Wu and Erica Keng for helping in the preparation of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Bonavida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baritaki, S., Chapman, A., Yeung, K. et al. Inhibition of epithelial to mesenchymal transition in metastatic prostate cancer cells by the novel proteasome inhibitor, NPI-0052: pivotal roles of Snail repression and RKIP induction. Oncogene 28, 3573–3585 (2009). https://doi.org/10.1038/onc.2009.214

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.214

Keywords

This article is cited by

Search

Quick links