Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

c-Myc induces changes in higher order rDNA structure on stimulation of quiescent cells

Abstract

c-Myc is an oncogenic transcription factor capable of activating transcription by all three nuclear RNA polymerases, thus acting as a high-level coordinator of protein synthesis capacity and cell growth rate. c-Myc recruits RNA polymerase I-related transcription factors to the rDNA when quiescent cells are stimulated to re-enter the cell cycle. Using a model system of cell lines with variable c-Myc status, we show that on stimulation c-Myc rapidly induces gene loop structures in rDNA chromatin that juxtapose upstream and downstream rDNA sequences. c-Myc activation is both necessary and sufficient for this change in rDNA chromatin conformation. c-Myc activation induces association of TTF-1 with the rDNA, and c-Myc is physically associated with induced rDNA gene loops. The origins of two or more rDNA gene loops are closely juxtaposed, suggesting the possibility that c-Myc induces nucleolar chromatin hubs. Induction of rDNA gene loops may be an early step in the reprogramming of quiescent cells as they re-enter the growth cycle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Ansari A, Hampsey M . (2005). A role for the CPF 3′-end processing machinery in RNAP II-dependent gene looping. Genes Dev 19: 2969–2978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arabi A, Wu S, Ridderstrale K, Bierhoff H, Shiue C, Fatyol K et al. (2005). c-Myc associates with ribosomal DNA and activates RNA polymerase I transcription. Nat Cell Biol 7: 303–310.

    Article  CAS  PubMed  Google Scholar 

  • Bukhari MH, Niazi S, Khan SA, Hashmi I, Perveen S, Qureshi SS et al. (2007). Modified method of AgNOR staining for tissue and interpretation in histopathology. Int J Exp Pathol 88: 47–53.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cassidy BG, Yang-Yen HF, Rothblum LI . (1987). Additional RNA polymerase I initiation site within the nontranscribed spacer region of the rat rRNA gene. Mol Cell Biol 7: 2388–2396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comai L, Tanese N, Tjian R . (1992). The TATA-binding protein and associated factors are integral components of the RNA polymerase I transcription factor, SL1. Cell 68: 965–976.

    Article  CAS  PubMed  Google Scholar 

  • de Laat W, Grosveld F . (2003). Spatial organization of gene expression: the active chromatin hub. Chromosome Res 11: 447–459.

    Article  CAS  PubMed  Google Scholar 

  • Dean M, Levine RA, Ran W, Kindy MS, Sonenshein GE, Campisi J . (1986). Regulation of c-myc transcription and mRNA abundance by serum growth factors and cell contact. J Biol Chem 261: 9161–9166.

    CAS  PubMed  Google Scholar 

  • Fischer AH, Bardarov Jr S, Jiang Z . (2004). Molecular aspects of diagnostic nucleolar and nuclear envelope changes in prostate cancer. J Cell Biochem 91: 170–184.

    Article  CAS  PubMed  Google Scholar 

  • Friedrich JK, Panov KI, Cabart P, Russell J, Zomerdijk JC . (2005). TBP-TAF complex SL1 directs RNA polymerase I pre-initiation complex formation and stabilizes upstream binding factor at the rDNA promoter. J Biol Chem 280: 29551–29558.

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Roman N, Grandori C, Eisenman RN, White RJ . (2003). Direct activation of RNA polymerase III transcription by c-Myc. Nature 421: 290–294.

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Roman N, Felton-Edkins ZA, Kenneth NS, Goodfellow SJ, Athineos D, Zhang J et al. (2006). Activation by c-Myc of transcription by RNA polymerases I, II and III. Biochem Soc Symp 73: 141–154.

    Article  CAS  Google Scholar 

  • Grandori C, Gomez-Roman N, Felton-Edkins ZA, Ngouenet C, Galloway DA, Eisenman RN et al. (2005). c-Myc binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase I. Nat Cell Biol 7: 311–318.

    Article  CAS  PubMed  Google Scholar 

  • Grewal SS, Li L, Orian A, Eisenman RN, Edgar BA . (2005). Myc-dependent regulation of ribosomal RNA synthesis during Drosophila development. Nat Cell Biol 7: 295–302.

    Article  CAS  PubMed  Google Scholar 

  • Grummt I . (2003). Life on a planet of its own: regulation of RNA polymerase I transcription in the nucleolus. Genes Dev 17: 1691–1702.

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Verdun D, Roussel P, Gebrane-Younes J . (2002). Emerging concepts of nucleolar assembly. J Cell Sci 115: 2265–2270.

    CAS  PubMed  Google Scholar 

  • Holzel M, Kohlhuber F, Schlosser I, Holzel D, Luscher B, Eick D . (2001). Myc/Max/Mad regulate the frequency but not the duration of productive cell cycles. EMBO Rep 2: 1125–1132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iritani BM, Eisenman RN . (1999). c-Myc enhances protein synthesis and cell size during B lymphocyte development. Proc Natl Acad Sci USA 96: 13180–13185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keppel F . (1986). Transcribed human ribosomal RNA genes are attached to the nuclear matrix. J Mol Biol 187: 15–21.

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Li Q, Dang CV, Lee LA . (2000). Induction of ribosomal genes and hepatocyte hypertrophy by adenovirus-mediated expression of c-Myc in vivo. Proc Natl Acad Sci USA 97: 11198–11202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar PP, Bischof O, Purbey PK, Notani D, Urlaub H, Dejean A et al. (2007). Functional interaction between PML and SATB1 regulates chromatin-loop architecture and transcription of the MHC class I locus. Nat Cell Biol 9: 45–56.

    Article  PubMed  Google Scholar 

  • Lawlor ER, Soucek L, Brown-Swigart L, Shchors K, Bialucha CU, Evan GI . (2006). Reversible kinetic analysis of Myc targets in vivo provides novel insights into Myc-mediated tumorigenesis. Cancer Res 66: 4591–4601.

    Article  CAS  PubMed  Google Scholar 

  • Littlewood TD, Hancock DC, Danielian PS, Parker MG, Evan GI . (1995). A modified oestrogen receptor ligand-binding domain as an improved switch for the regulation of heterologous proteins. Nucleic Acids Res 23: 1686–1690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lutz W, Leon J, Eilers M . (2002). Contributions of Myc to tumorigenesis. Biochim Biophys Acta 1602: 61–71.

    CAS  PubMed  Google Scholar 

  • Mais C, Wright JE, Prieto JL, Raggett SL, McStay B . (2005). UBF-binding site arrays form pseudo-NORs and sequester the RNA polymerase I transcription machinery. Genes Dev 19: 50–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mateyak MK, Obaya AJ, Adachi S, Sedivy JM . (1997). Phenotypes of c-Myc-deficient rat fibroblasts isolated by targeted homologous recombination. Cell Growth Differ 8: 1039–1048.

    CAS  PubMed  Google Scholar 

  • Nemeth A, Guibert S, Tiwari VK, Ohlsson R, Langst G . (2008). Epigenetic regulation of TTF-I-mediated promoter-terminator interactions of rRNA genes. EMBO J 27: 1255–1265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O'Sullivan AC, Sullivan GJ, McStay B . (2002). UBF binding in vivo is not restricted to regulatory sequences within the vertebrate ribosomal DNA repeat. Mol Cell Biol 22: 657–668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O'Sullivan JM, Tan-Wong SM, Morillon A, Lee B, Coles J, Mellor J et al. (2004). Gene loops juxtapose promoters and terminators in yeast. Nat Genet 36: 1014–1018.

    Article  CAS  PubMed  Google Scholar 

  • Poortinga G, Hannan KM, Snelling H, Walkley CR, Jenkins A, Sharkey K et al. (2004). MAD1 and c-MYC regulate UBF and rDNA transcription during granulocyte differentiation. EMBO J 23: 3325–3335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruggero D, Pandolfi PP . (2003). Does the ribosome translate cancer? Nat Rev Cancer 3: 179–192.

    Article  CAS  PubMed  Google Scholar 

  • Schlosser I, Holzel M, Murnseer M, Burtscher H, Weidle UH, Eick D . (2003). A role for c-Myc in the regulation of ribosomal RNA processing. Nucleic Acids Res 31: 6148–6156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sears RC . (2004). The life cycle of C-myc: from synthesis to degradation. Cell Cycle 3: 1133–1137.

    Article  CAS  PubMed  Google Scholar 

  • Seo J, Lozano MM, Dudley JP . (2005). Nuclear matrix binding regulates SATB1-mediated transcriptional repression. J Biol Chem 280: 24600–24609.

    Article  CAS  PubMed  Google Scholar 

  • Shav-Tal Y, Blechman J, Darzacq X, Montagna C, Dye BT, Patton JG et al. (2005). Dynamic sorting of nuclear components into distinct nucleolar caps during transcriptional inhibition. Mol Biol Cell 16: 2395–2413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Splinter E, Grosveld F, de Laat W . (2004). 3C technology: analyzing the spatial organization of genomic loci in vivo. Methods Enzymol 375: 493–507.

    Article  CAS  PubMed  Google Scholar 

  • Yin X, Giap C, Lazo JS, Prochownik EV . (2003). Low molecular weight inhibitors of Myc-Max interaction and function. Oncogene 22: 6151–6159.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Lars-Gunnar Larsson for the provision of rat fibroblasts HO15.15, TGR1 and Rat1MycER and Professor Dirk Eick for the generous gift of Smoxi4 cells. This work was supported by a Taiwan Fellowship from the Taiwan Root Medical Peace Corps, the Swedish Cancer Society and the research foundations of the Karolinska Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A P H Wright.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shiue, CN., Berkson, R. & Wright, A. c-Myc induces changes in higher order rDNA structure on stimulation of quiescent cells. Oncogene 28, 1833–1842 (2009). https://doi.org/10.1038/onc.2009.21

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.21

Keywords

This article is cited by

Search

Quick links