Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

EphrinA5 acts as a tumor suppressor in glioma by negative regulation of epidermal growth factor receptor

Abstract

Eph receptors, the largest subfamily of receptor tyrosine kinases, and their ephrin ligands play important roles in nervous system development. Recently, they have been implicated in tumorigenesis of different cancers. In this study, we showed that the expression of ephrinA5 was dramatically downregulated in primary gliomas compared with normal tissues. Forced expression of ephrinA5 reduced tumorigenicity of human glioma U373 cells. Epidermal growth factor receptor (EGFR), which frequently acts as an oncoprotein in glioma, was greatly decreased in ephrinA5-transfected glioma cells, and the two molecules exhibited a mutually exclusive expression pattern in primary glioma samples. We found that ephrinA5 enhanced c-Cbl binding to EGFR, thus promoted ubiquitylation and degradation of the receptor. Either ephrinA5-Fc or EphA2-Fc treatment simulating bidirectional signaling of Eph/ephrin system resulted in EGFR decrease. This study discovered that ephrinA5 acted as a tumor suppressor in glioma, and its negative regulation of EGFR contributed to the suppressive effects. In addition to identifying a novel mechanism underlying tumor suppressor activity of ephrinA5, we also showed cross-talk between different receptor tyrosine kinase families in glioma. These findings may improve therapeutic strategies for glioma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Bolz J, Uziel D, Muhlfriedel S, Gullmar A, Peuckert C, Zarbalis K et al. (2004). Multiple roles of ephrins during the formation of thalamocortical projections: maps and more. J Neurobiol 59: 82–94.

    Article  CAS  PubMed  Google Scholar 

  • Bordier C . (1981). Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem 256: 1604–1607.

    CAS  PubMed  Google Scholar 

  • Brantley-Sieders DM, Fang WB, Hwang Y, Hicks D, Chen J . (2006). Ephrin-A1 facilitates mammary tumor metastasis through an angiogenesis-dependent mechanism mediated by EphA receptor and vascular endothelial growth factor in mice. Cancer Res 66: 10315–10324.

    Article  CAS  PubMed  Google Scholar 

  • Davy A, Gale NW, Murray EW, Klinghoffer RA, Soriano P, Feuerstein C et al. (1999). Compartmentalized signaling by GPI-anchored ephrin-A5 requires the Fyn tyrosine kinase to regulate cellular adhesion. Genes Dev 13: 3125–3135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng YZ, Chen PP, Wang Y, Yin D, Koeffler HP, Li B et al. (2007). Connective tissue growth factor is overexpressed in esophageal squamous cell carcinoma and promotes tumorigenicity through beta-catenin-T-cell factor/Lef signaling. J Biol Chem 282: 36571–36581.

    Article  CAS  PubMed  Google Scholar 

  • Finne EF, Munthe E, Aasheim HC . (2004). A new ephrin-A1 isoform (ephrin-A1b) with altered receptor binding properties abrogates the cleavage of ephrin-A1a. Biochem J 379: 39–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gale NW, Holland SJ, Valenzuela DM, Flenniken A, Pan L, Ryan TE et al. (1996). Eph receptors and ligands comprise two major specificity subclasses and are reciprocally compartmentalized during embryogenesis. Neuron 17: 9–19.

    Article  CAS  PubMed  Google Scholar 

  • Grossmann AH, Kolibaba KS, Willis SG, Corbin AS, Langdon WS, Deininger MW et al. (2004). Catalytic domains of tyrosine kinases determine the phosphorylation sites within c-Cbl. FEBS Lett 577: 555–562.

    Article  CAS  PubMed  Google Scholar 

  • Hafner C, Schmitz G, Meyer S, Bataille F, Hau P, Langmann T et al. (2004). Differential gene expression of Eph receptors and ephrins in benign human tissues and cancers. Clin Chem 50: 490–499.

    Article  CAS  PubMed  Google Scholar 

  • Halatsch ME, Schmidt U, Behnke-Mursch J, Unterberg A, Wirtz CR . (2006). Epidermal growth factor receptor inhibition for the treatment of glioblastoma multiforme and other malignant brain tumours. Cancer Treat Rev 32: 74–89.

    Article  CAS  PubMed  Google Scholar 

  • Herath NI, Spanevello MD, Sabesan S, Newton T, Cummings M, Duffy S et al. (2006). Over-expression of Eph and ephrin genes in advanced ovarian cancer: ephrin gene expression correlates with shortened survival. BMC Cancer 6: 144.

    Article  PubMed  PubMed Central  Google Scholar 

  • Huberman AD, Murray KD, Warland DK, Feldheim DA, Chapman B . (2005). Ephrin-As mediate targeting of eye-specific projections to the lateral geniculate nucleus. Nat Neurosci 8: 1013–1021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joazeiro CA, Wing SS, Huang H, Leverson JD, Hunter T, Liu YC . (1999). The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science 286: 309–312.

    Article  CAS  PubMed  Google Scholar 

  • Kuijper S, Turner CJ, Adams RH . (2007). Regulation of angiogenesis by Eph-ephrin interactions. Trends Cardiovasc Med 17: 145–151.

    Article  CAS  PubMed  Google Scholar 

  • Larsen AB, Pedersen MW, Stockhausen MT, Grandal MV, van Deurs B, Poulsen HS . (2007). Activation of the EGFR gene target EphA2 inhibits epidermal growth factor-induced cancer cell motility. Mol Cancer Res 5: 283–293.

    Article  CAS  PubMed  Google Scholar 

  • Levkowitz G, Waterman H, Ettenberg SA, Katz M, Tsygankov AY, Alroy I et al. (1999). Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1. Mol Cell 4: 1029–1040.

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Dong T, Proschel C, Noble M . (2007). Chemically diverse toxicants converge on Fyn and c-Cbl to disrupt precursor cell function. PLoS Biol 5: e35.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu DP, Wang Y, Koeffler HP, Xie D. . (2007). Ephrin-A1 is a negative regulator in glioma through down-regulation of EphA2 and FAK. Int J Oncol 30: 865–871.

    CAS  PubMed  Google Scholar 

  • Liu XW, Katagiri Y, Jiang H, Gong LJ, Guo LY, Shibutani M et al. (2000). Cloning and characterization of the promoter region of the rat epidermal growth factor receptor gene and its transcriptional regulation by nerve growth factor in PC12 cells. J Biol Chem 275: 7280–7288.

    Article  CAS  PubMed  Google Scholar 

  • Munthe E, Rian E, Holien T, Rasmussen A, Levy FO, Aasheim H . (2000). Ephrin-B2 is a candidate ligand for the Eph receptor, EphB6. FEBS Lett 466: 169–174.

    Article  CAS  PubMed  Google Scholar 

  • Nicholas MK, Lukas RV, Jafri NF, Faoro L, Salgia R . (2006). Epidermal growth factor receptor - mediated signal transduction in the development and therapy of gliomas. Clin Cancer Res 12: 7261–7270.

    Article  CAS  PubMed  Google Scholar 

  • Oksvold MP, Thien CB, Widerberg J, Chantry A, Huitfeldt HS, Langdon WY . (2003). Serine mutations that abrogate ligand-induced ubiquitination and internalization of the EGF receptor do not affect c-Cbl association with the receptor. Oncogene 22: 8509–8518.

    Article  CAS  PubMed  Google Scholar 

  • Otal R, Burgaya F, Frisen J, Soriano E, Martinez A . (2006). Ephrin-A5 modulates the topographic mapping and connectivity of commissural axons in murine hippocampus. Neuroscience 141: 109–121.

    Article  CAS  PubMed  Google Scholar 

  • Poliakov A, Cotrina M, Wilkinson DG . (2004). Diverse roles of eph receptors and ephrins in the regulation of cell migration and tissue assembly. Dev Cell 7: 465–480.

    Article  CAS  PubMed  Google Scholar 

  • Qin XF, An DS, Chen IS, Baltimore D . (2003). Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proc Natl Acad Sci USA 100: 183–188.

    Article  CAS  PubMed  Google Scholar 

  • Ravid T, Heidinger JM, Gee P, Khan EM, Goldkorn T . (2004). c-Cbl-mediated ubiquitinylation is required for epidermal growth factor receptor exit from the early endosomes. J Biol Chem 279: 37153–37162.

    Article  CAS  PubMed  Google Scholar 

  • Sharfe N, Freywald A, Toro A, Roifman CM . (2003). Ephrin-A1 induces c-Cbl phosphorylation and EphA receptor down-regulation in T cells. J Immunol 170: 6024–6032.

    Article  CAS  PubMed  Google Scholar 

  • Sun ZJ, Wang Y, Cai Z, Chen PP, Tong XJ, Xie D . (2008). Involvement of Cyr61 in growth, migration, and metastasis of prostate cancer cells. Br J Cancer 99: 1656–1667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Surawska H, Ma PC, Salgia R . (2004). The role of ephrins and Eph receptors in cancer. Cytokine Growth Factor Rev 15: 419–433.

    Article  CAS  PubMed  Google Scholar 

  • Varelias A, Koblar SA, Cowled PA, Carter CD, Clayer M . (2002). Human osteosarcoma expresses specific ephrin profiles: implications for tumorigenicity and prognosis. Cancer 95: 862–869.

    Article  PubMed  Google Scholar 

  • Walker-Daniels J, Riese II DJ, Kinch MS . (2002). c-Cbl-dependent EphA2 protein degradation is induced by ligand binding. Mol Cancer Res 1: 79–87.

    CAS  PubMed  Google Scholar 

  • Wang Y, Ota S, Kataoka H, Kanamori M, Li Z, Band H et al. (2002). Negative regulation of EphA2 receptor by Cbl. Biochem Biophys Res Commun 296: 214–220.

    Article  CAS  PubMed  Google Scholar 

  • Waterman H, Yarden Y . (2001). Molecular mechanisms underlying endocytosis and sorting of ErbB receptor tyrosine kinases. FEBS Lett 490: 142–152.

    Article  CAS  PubMed  Google Scholar 

  • Xie D, Yin D, Tong X, O’Kelly J, Mori A, Miller C et al. (2004). Cyr61 is overexpressed in gliomas and involved in integrin-linked kinase-mediated Akt and beta-catenin-TCF/Lef signaling pathways. Cancer Res 64: 1987–1996.

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Thompson KL, Shephard LB, Hudson LG, Gill GN . (1993). T3 receptor suppression of Sp1-dependent transcription from the epidermal growth factor receptor promoter via overlapping DNA-binding sites. J Biol Chem 268: 16065–16073.

    CAS  PubMed  Google Scholar 

  • Yarden RI, Wilson MA, Chrysogelos SA . (2001). Estrogen suppression of EGFR expression in breast cancer cells: a possible mechanism to modulate growth. J Cell Biochem Suppl 36: 232–246.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Alfred C Johnson for the EGFR promoter reporter plasmid, Dr Yosef Yarden for the hEGFR and hEGFR (Y1045F) plasmids, Dr De Camilli P for pcDNA3.1-HA-Ubiquitin plasmid and Dr Hans-Christian Aasheim for CD19-Fc and EphA2-Fc constructs.

We also would like to thank Dr H Phillip Koeffler (Cedars-Sinai Medical Center) for helpful discussions, suggestions and critical reading of this paper.

This work was supported by Ministry of Science and Technology 863 Program 2007AA02Z474, 973 Program 2007CB914704, and 2008ZX10207, National Natural Science Funds for Distinguished Young Scholar 30725010, National Natural Science Foundation of China 90813023 and 30528003. Chinese Academy of Sciences Grant KSCX2-YW-R-152 and KSCX-YW-R-73, and Science and Technology Commission of Shanghai Municipality 08140902300 to D Xie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Xie.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, JJ., Liu, DP., Liu, GT. et al. EphrinA5 acts as a tumor suppressor in glioma by negative regulation of epidermal growth factor receptor. Oncogene 28, 1759–1768 (2009). https://doi.org/10.1038/onc.2009.15

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.15

Keywords

This article is cited by

Search

Quick links