Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Repression of SHP-1 expression by p53 leads to trkA tyrosine phosphorylation and suppression of breast cancer cell proliferation

Abstract

The nerve growth factor (NGF) receptor, trkA, the tumour suppressor p53 and the phosphatase SHP-1 are critical in cell proliferation and differentiation. SHP-1 is a trkA phosphatase that dephosphorylates trkA at tyrosines (Y) 674 and 675. p53 can induce trkA activation and tyrosine phosphorylation in the absence of NGF stimulation. In breast cancer tumours trkA expression is associated with increased patient survival. TrkA protein expression is higher in breast-cancer cell lines than in normal breast epithelia. In cell lines (but not in normal breast epithelia) trkA is functional and can be NGF-stimulated to promote cell proliferation. This study investigates the functional relationship between trkA, p53 and SHP-1 in breast-cancer, and reveals that in wild-type (wt) trkA expressing breast-cancer cells both endogenous wtp53, activated by therapeutic agents, and transfected wtp53 repress expression of SHP-1 through the proximal CCAAT sequence of the SHP-1-P1-promoter and the transcription factor NF-Y. In these cells trkA-Y674/Y675 phosphorylation is detected when SHP-1 protein levels decrease in a wtp53-dependent manner. Proliferation and cell-cycle assays, with cells expressing endogenous or transfected wt-trkA and a temperature-sensitive p53 grown at 32 °C (when p53 is in the wt configuration), show suppressed cell proliferation. Suppression is not detected when grown at 37 °C (when p53 is in the mutant configuration). A release from suppression is observed when these cells are transiently transfected with wt-SHP-1 and grown at 32 °C. Suppression is also detected when, as control, wt-trkA-expressing cells are transiently transfected with SHP-1-siRNA, but not when a dominant-negative (DN) mutant trkA is used to abolish wt-trkA activity. Importantly, suppression is not seen with control trkA-negative breast-cancer cells (expressing wtp53, wt-SHP-1 and undetectable trkA), transfected with Y674F/Y675F mutant-trkA. BrdU-incorporation experiments reveal lack of incorporation in cells expressing wt-trkA and wtp53, or wt-trkA and SHP-1-siRNA. However, BrdU is incorporated in the presence of Y674F/Y675F mutant trkA or DN mutant trkA. These results indicate that p53 repression of SHP-1 expression leads to trkA-Y674/Y675 phosphorylation and trkA-dependent suppression of breast-cancer cell proliferation. These data provide an explanation as to why high trkA levels are associated with favourable prognosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Banville D, Stocco R, Shen SH . (1995). Human protein tyrosine phosphatase 1C (PTPN6) gene structure: alternate promoter usage and exon skipping generate multiple transcripts. Genomics 27: 165–173.

    Article  CAS  Google Scholar 

  • Benhar M, Engelberg D, Levitzki A . (2002). Cisplatin-induced activation of the EGF receptor. Oncogene 21: 8723–8731.

    Article  CAS  Google Scholar 

  • Berns K, Hijmans EM, Mullenders J, Brummelkamp TR, Velds A, Heimerikx M et al. (2004). A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428: 431–437.

    Article  CAS  PubMed Central  Google Scholar 

  • Bourdon JC, Fernandes K, Murray-Zmijewski F, Liu G, Diot A, Xirodimas DP et al. (2005). p53 isoforms can regulate p53 transcriptional activity. Genes Dev 19: 2122–2137.

    Article  CAS  PubMed Central  Google Scholar 

  • Browes C, Rowe J, Brown A, Montano X . (2001). Analysis of p53 and trk A association. FEBS Lett 497: 20–25.

    Article  CAS  Google Scholar 

  • Brown A, Browes C, Mitchell M, Montano X . (2000). c-abl is involved in the association of p53 and trk A. Oncogene 19: 3032–3040.

    Article  CAS  Google Scholar 

  • Buday L, Downward J . (1993). Epidermal growth factor regulates p21ras through the formation of a complex of receptor, Grb2 adapter protein, and Sos nucleotide exchange factor. Cell 73: 611–620.

    Article  CAS  Google Scholar 

  • Carvalho I, Milanezi F, Martins A, Reis RM, Schmitt F . (2005). Overexpression of platelet-derived growth factor receptor alpha in breast cancer is associated with tumour progression. Breast Cancer Res 7: R788–R795.

    Article  CAS  PubMed Central  Google Scholar 

  • Concin N, Zeillinger C, Tong D, Stimpfl M, König M, Printz D et al. (2003). Comparison of p53 mutational status with mRNA and protein expression in a panel of 24 human breast carcinoma cell lines. Breast Cancer Res Treat 79: 37–46.

    Article  CAS  PubMed Central  Google Scholar 

  • Cunningham ME, Stephens RM, Kaplan DR, Greene LA . (1997). Autophosphorylation of activation loop tyrosines regulates signaling by the TRK nerve growth factor receptor. J Biol Chem 272: 10957–10967.

    Article  CAS  Google Scholar 

  • Descamps S, Lebourhis X, Delehedde M, Boilly B, Hondermarck H . (1998). Nerve growth factor is mitogenic for cancerous but not normal human breast epithelial cells. J Biol Chem 273: 16659–16662.

    Article  CAS  Google Scholar 

  • Descamps S, Pawlowski V, Révillion F, Hornez L, Hebbar M, Boilly B et al. (2001a). Expression of NGF receptors and their prognostic value in human breast cancer. Cancer Res 61: 4337–4340.

    CAS  PubMed Central  Google Scholar 

  • Descamps S, Toillon RA, Adriaenssens E, Pawlowski V, Cool SM, Nurcombe V et al. (2001b). Nerve growth factor stimulates proliferation and survival of human breast cancer cells through two distinct signaling pathways. J Biol Chem 276: 17864–17870.

    Article  CAS  PubMed Central  Google Scholar 

  • Downward J . (2004). Use of RNA interference libraries to investigate oncogenic signalling in mammalian cells. Oncogene 23: 8376–8383.

    Article  CAS  Google Scholar 

  • el-Deiry WS, Kern SE, Pietenpol JA, Kinzler KW, Vogelstein B . (1992). Definition of a consensus binding site for p53. Nat Genet 1: 45–49.

    Article  CAS  PubMed Central  Google Scholar 

  • El-Abaseri TB, Putta S, Hansen LA . (2006). Ultraviolet irradiation induces keratinocyte proliferation and epidermal hyperplasia through the activation of the epidermal growth factor receptor. Carcinogenesis 27: 225–231.

    Article  CAS  Google Scholar 

  • Esposito D, Patel P, Stephens RM, Perez P, Chao MV, Kaplan DR et al. (2001). The cytoplasmic and transmembrane domains of the p75 and Trk A receptors regulate high affinity binding to nerve growth factor. J Biol Chem 276: 32687–32695.

    Article  CAS  Google Scholar 

  • Feki A, Irminger-Finger I . (2004). Mutational spectrum of p53 mutations in primary breast and ovarian tumors. Crit Rev Oncol Hematol 52: 103–116.

    Article  Google Scholar 

  • Fraser SP, Salvador V, Manning EA, Mizal J, Altun S, Raza M et al. (2003). Contribution of functional voltage-gated Na+ channel expression to cell behaviors involved in the metastatic cascade in rat prostate cancer: I. Lateral motility. J Cell Physiol 195: 479–487.

    Article  CAS  Google Scholar 

  • Gentry JJ, Barker PA, Carter BD . (2004). The p75 neurotrophin receptor: multiple interactors and numerous functions. Prog Brain Res 146: 25–39.

    Article  CAS  Google Scholar 

  • Horvat A, Schwaiger F, Hager G, Brocker F, Streif R, Knyazev P et al. (2001). A novel role for protein tyrosine phosphatase shp1 in controlling glial activation in the normal and injured nervous system. J Neurosci 21: 865–874.

    Article  CAS  Google Scholar 

  • Ho J, Benchimol S . (2003). Transcriptional repression mediated by the p53 tumour suppressor. Cell Death Differ 10: 404–408.

    Article  CAS  Google Scholar 

  • Jagjit SG, Anthony JW . (1998). Activation of the high affinity nerve growth factor receptor by two polyanionic chemotherapeutic agents: role in drug induced neurotoxicity. J Neuro Oncol 40: 19–27.

    Article  Google Scholar 

  • Imbriano C, Gurtner A, Cocchiarella F, Di Agostino S, Basile V, Gostissa M et al. (2005). Direct p53 transcriptional repression: in vivo analysis of CCAAT-containing G2/M promoters. Mol Cell Biol 25: 3737–3751.

    Article  CAS  PubMed Central  Google Scholar 

  • Kaplan DR, Miller FD . (2000). Neurotrophin signal transduction in the nervous system. Curr Opin Neurobiol 10: 381–391.

    Article  CAS  Google Scholar 

  • Keilhack H, Tenev T, Nyakatura E, Godovac-Zimmermann J, Nielsen L, Seedorf K et al. (1998). Phosphotyrosine 1173 mediates binding of the protein-tyrosine phosphatase SHP-1 to the epidermal growth factor receptor and attenuation of receptor signaling. J Biol Chem 273: 24839–24846.

    Article  CAS  Google Scholar 

  • Mantovani R . (1999). The molecular biology of the CCAAT-binding factor NF-Y. Gene 239: 15–27.

    Article  CAS  PubMed Central  Google Scholar 

  • MacDonald JI, Gryz EA, Kubu CJ, Verdi JM, Meakin SO . (2000). Direct binding of the signaling adapter protein Grb2 to the activation loop tyrosines on the nerve growth factor receptor tyrosine kinase, TrkA. J Biol Chem 275: 18225–18233.

    Article  CAS  Google Scholar 

  • Marsh HN, Dubreuil CI, Quevedo C, Lee A, Majdan M, Walsh GS et al. (2003). SHP-1 negatively regulates neuronal survival by functioning as a TrkA phosphatase. J Cell Biol 163: 999–1010.

    Article  CAS  PubMed Central  Google Scholar 

  • Meek DW . (2004). The p53 response to DNA damage. DNA Repair 3: 1049–1056.

    Article  CAS  Google Scholar 

  • Michalovitz D, Halevy O, Oren M . (1990). Conditional inhibition of transformation and of cell proliferation by a temperature-sensitive mutant of p53. Cell 62: 671–680.

    Article  CAS  Google Scholar 

  • Milner J, Medcalf EA . (1991). Cotranslation of activated mutant p53 with wild type drives the wild-type p53 protein into the mutant conformation. Cell 65: 765–774.

    Article  CAS  Google Scholar 

  • Moll UM, Riou G, Levine AJ . (1992). Two distinct mechanisms alter p53 in breast cancer: mutation and nuclear exclusion. Proc Natl Acad Sci USA 89: 7262–7266.

    Article  CAS  Google Scholar 

  • Moll UM, Ostermeyer AG, Haladay R, Winkfield B, Frazier M, Zambetti G . (1996). Cytoplasmic sequestration of wild-type p53 protein impairs the G1 checkpoint after DNA damage. Mol Cell Biol 16: 1126–1137.

    Article  CAS  PubMed Central  Google Scholar 

  • Moll UM, Slade N . (2004). p63 and p73: roles in development and tumor formation. Mol Cancer Res 2: 371–386.

    CAS  PubMed Central  Google Scholar 

  • Montano X . (1997). p53 associates with trk tyrosine kinase. Oncogene 15: 245–256.

    Article  CAS  Google Scholar 

  • Mosesson Y, Yarden Y . (2004). Oncogenic growth factor receptors: implications for signal transduction therapy. Semin Cancer Biol 14: 262–270.

    Article  CAS  Google Scholar 

  • Neel BG, Gu H, Pao L . (2003). The ‘Shp’ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem Sci 28: 284–293.

    Article  CAS  Google Scholar 

  • Olivier M, Hussain SP, Caron de Fromentel C, Hainaut P, Harris CC . (2004). TP53 mutation spectra and load: a tool for generating hypotheses on the etiology of cancer. IARC Sci Publ 157: 247–270.

    Google Scholar 

  • Ostman A, Hellberg C, Bohmer FD . (2006). Protein-tyrosine phosphatases and cancer. Nat Rev Cancer 6: 307–320.

    Article  PubMed Central  Google Scholar 

  • Qian X, Riccio A, Zhang Y, Ginty DD . (1998). Identification and characterization of novel substrates of Trk receptors in developing neurons. Neuron 21: 1017–1029.

    Article  CAS  Google Scholar 

  • Qian X, Ginty DD . (2001). SH2-B and APS are multimeric adapters that augment TrkA signaling. Mol Cell Biol 21: 1613–1620.

    Article  CAS  PubMed Central  Google Scholar 

  • Reichardt LF . (2006). Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B Biol Sci 361: 1545–1564.

    Article  CAS  PubMed Central  Google Scholar 

  • Reis-Filho JS, Steele D, Di Palma S, Jones RL, Savage K, James M et al. (2006). Distribution and significance of nerve growth factor receptor (NGFR/p75NTR) in normal, benign and malignant breast tissue. Mod Pathol 19: 307–319.

    Article  CAS  Google Scholar 

  • Roccato E, Miranda C, Raho G, Pagliardini S, Pierotti MA, Greco A . (2005). Analysis of SHP-1-mediated down-regulation of the TRK-T3 oncoprotein identifies Trk-fused gene (TFG) as a novel SHP-1-interacting protein. J Biol Chem 280: 3382–3389.

    Article  CAS  Google Scholar 

  • Sakamoto Y, Kitajima Y, Edakuni G, Hamamoto T, Miyazaki K . (2001). Combined evaluation of NGF and p75NGFR expression is a biomarker for predicting prognosis in human invasive ductal breast carcinoma. Oncol Rep 8: 973–980.

    CAS  PubMed  Google Scholar 

  • Shaulian E, Zauberman A, Ginsberg D, Oren M . (1992). Identification of a minimal transforming domain of p53: negative dominance through abrogation of sequence-specific DNA binding. Mol Cell Biol 12: 5581–5592.

    Article  CAS  PubMed Central  Google Scholar 

  • Shaulsky G, Goldfinger N, Peled A, Rotter V . (1991). Involvement of wild-type p53 protein in the cell cycle requires nuclear localization. Cell Growth Differ 2: 661–670.

    CAS  PubMed  Google Scholar 

  • Stommel JM, Marchenko ND, Jimenez GS, Moll UM, Hope TJ, Wahl GM . (1999). A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. EMBO J 18: 1660–1672.

    Article  CAS  PubMed Central  Google Scholar 

  • Spiesbach K, Tannapfel A, Mössner J, Engeland K . (2005). TAp63gamma can substitute for p53 in inducing expression of the maspin tumor suppressor. Int J Cancer 114: 555–562.

    Article  CAS  Google Scholar 

  • Stiewe T . (2007). The p53 family in differentiation and tumorigenesis. Nat Rev Cancer 7: 165–168.

    Article  CAS  Google Scholar 

  • Tagliabue E, Castiglioni F, Ghirelli C, Modugno M, Asnaghi L, Somenzi G et al. (2000). Nerve growth factor cooperates with p185(HER2) in activating growth of human breast carcinoma cells. J Biol Chem 275: 5388–5394.

    Article  CAS  PubMed Central  Google Scholar 

  • Timms JF, Carlberg K, Gu H, Chen H, Kamatkar S, Nadler MJ et al. (1998). Identification of major binding proteins and substrates for the SH2-containing protein tyrosine phosphatase SHP-1 in macrophages. Mol Cell Biol 18: 3838–3850.

    Article  CAS  PubMed Central  Google Scholar 

  • Vadlamudi RK, Adam L, Nguyen D, Santos M, Kumar R . (2002). Differential regulation of components of the focal adhesion complex by heregulin: role of phosphatase SHP-2. J Cell Physiol 190: 189–199.

    Article  CAS  Google Scholar 

  • Vambutas V, Kaplan DR, Sells MA, Chernoff J . (1995). Nerve growth factor stimulates tyrosine phosphorylation and activation of Src homology-containing protein-tyrosine phosphatase 1 in PC12 cells. J Biol Chem 270: 25629–25633.

    Article  CAS  Google Scholar 

  • Wasner M, Haugwitz U, Reinhard W, Tschöp K, Spiesbach K, Lorenz J et al. (2003). Three CCAAT-boxes and a single cell cycle genes homology region (CHR) are the major regulating sites for transcription from the human cyclin B2 promoter. Gene 312: 225–237.

    Article  CAS  Google Scholar 

  • Wu C, Guan Q, Wang Y, Zhao ZJ, Zhou GW . (2003). SHP-1 suppresses cancer cell growth by promoting degradation of JAK kinases. J Cell Biochem 90: 1026–1037.

    Article  CAS  Google Scholar 

  • Xie P, Chan FS, IP NY, Leung MF . (2000). Induction of TrkA expression by differentiation inducers in human myeloid leukemia KG-1 cells. Leuk Lymphoma 36: 595–601.

    Article  CAS  Google Scholar 

  • Xu Y, Banville D, Zhao HF, Zhao X, Shen SH . (2001). Transcriptional activity of the SHP-1 gene in MCF7 cells is differentially regulated by binding of NF-Y factor to two distinct CCAAT-elements. Gene 269: 141–153.

    Article  CAS  Google Scholar 

  • Yip SS, Crew AJ, Gee JM, Hui R, Blamey RW, Robertson JF et al. (2000). Up-regulation of the protein tyrosine phosphatase SHP-1 in human breast cancer and correlation with GRB2 expression. Int J Cancer 88: 363–368.

    Article  CAS  Google Scholar 

  • Yu Z, Su L, Hoglinger O, Jaramillo ML, Banville D, Shen SH . (1998). SHP-1 associates with both platelet-derived growth factor receptor and the p85 subunit of phosphatidylinositol 3-kinase. J Biol Chem 273: 3687–3694.

    Article  CAS  Google Scholar 

  • Yun J, Chae HD, Choy HE, Chung J, Yoo HS, Han MH et al. (1999). p53 negatively regulates cdc2 transcription via the CCAAT-binding NF-Y transcription factor. J Biol Chem 274: 29677–29782.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks to Tessa Crompton, Sue Outram, Anna Furmanski and Ayad Eddaoudi for helping with FACS analysis; Shanie Budham-Mahadeo for helping with luciferase assays; Ralf Kirschner, Kurt Engeland, Finn Werner and David Mann for ChIP and BrdU incorporation protocols; Ben Neel and David Kaplan for wt-SHP-1, Δ-SHP-1 and anti-trk203-antibodies; Alison Sparks for sheep anti-p53-antibodies; Reiner Jänicke for MCF7-p53-RNAi cells; Borek Vojtesek for MCF7-p53DD Derek Huntley for bioinformatics and particularly to David Bacon for technical help with photography and graphics. This research was supported by a Breast Cancer Campaign grant awarded to XM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X Montano.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montano, X. Repression of SHP-1 expression by p53 leads to trkA tyrosine phosphorylation and suppression of breast cancer cell proliferation. Oncogene 28, 3787–3800 (2009). https://doi.org/10.1038/onc.2009.143

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.143

Keywords

This article is cited by

Search

Quick links