Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The role of PAK-1 in activation of MAP kinase cascade and oncogenic transformation by Akt

Abstract

The activity of protein kinase B, also known as Akt, is commonly elevated in human malignancies and plays a crucial role in oncogenic transformation. The relationship between Akt and the mitogen-activated protein kinase cascade, which is also frequently associated with oncogenesis, remains controversial. We report here examples of cooperation between Akt and cRaf in oncogenic transformation, which was accompanied by elevated activity of extracellular signal-regulated mitogen-activated protein kinases. The effect of Akt on extracellular signal-regulated kinases depended on the status of p21-activated kinase (PAK). Importantly, disruption of the function of PAK not only uncoupled the activation of Akt from that of extracellular signal-regulated kinases, but also greatly reduced the capacity of Akt to act as a transforming oncogene. For the malignancies with hyperactive Akt, our observations support the role for PAK-1 as a potential target for therapeutic intervention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Bereiter-Hahn J, Munnich A, Woiteneck P . (1998). Dependence of energy metabolism on the density of cells in culture. Cell Struct Funct 23: 85–93.

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary A, King WG, Mattaliano MD, Frost JA, Diaz B, Morrison DK et al. (2000). Phosphatidylinositol 3-kinase regulates Raf1 through Pak phosphorylation of serine 338. Curr Biol 10: 551–554.

    Article  CAS  PubMed  Google Scholar 

  • Euhus DM, Hudd C, LaRegina MC, Johnson FE . (1986). Tumor measurement in the nude mouse. J Surg Oncol 31: 229–234.

    Article  CAS  PubMed  Google Scholar 

  • Galang CK, García-Ramírez JJ, Solski PA, Westwick JK, Der CJ, Neznanov NN et al. (1996). Oncogenic Neu/ErbB-2 increases Ets, AP-1, and NF-kappaB-dependent gene expression, and inhibiting Ets activation blocks neu-mediated cellular transformation. J Biol Chem 271: 7992–7998.

    Article  CAS  PubMed  Google Scholar 

  • Galetic I, Maira SM, Andjelkovic M, Hemmings BA . (2003). Negative regulation of ERK and Elk by protein kinase B modulates c-Fos transcription. J Biol Chem 278: 4416–4423.

    Article  CAS  PubMed  Google Scholar 

  • Gartel AL, Kandel ES . (2006). RNA interference in cancer. Biomol Eng 23: 17–34.

    Article  CAS  PubMed  Google Scholar 

  • Kandel ES, Hay N . (1999). The regulation and activities of the multifunctional serine/threonine kinase Akt/PKB. Exp Cell Res 253: 210–229.

    Article  CAS  PubMed  Google Scholar 

  • Kandel ES, Skeen J, Majewski N, Di Cristofano A, Pandolfi PP, Feliciano CS et al. (2002). Activation of Akt/protein kinase B overcomes a G(2)/m cell cycle checkpoint induced by DNA damage. Mol Cell Biol 22: 7831–7841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy SG, Kandel ES, Cross TK, Hay N . (1999). Akt/Protein kinase B inhibits cell death by preventing the release of cytochrome c from mitochondria. Mol Cell Biol 19: 5800–5810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King AJ, Sun H, Diaz B, Barnard D, Miao W, Bagrodia S et al. (1998). The protein kinase Pak3 positively regulates Raf-1 activity through phosphorylation of serine 338. Nature 396: 180–183.

    Article  CAS  PubMed  Google Scholar 

  • Leevers SJ, Paterson HF, Marshall CJ . (1994). Requirement for Ras in Raf activation is overcome by targeting Raf to the plasma membrane. Nature 369: 411–414.

    Article  CAS  PubMed  Google Scholar 

  • McCubrey JA, Lee JT, Steelman LS, Blalock WL, Moye PW, Chang F et al. (2001). Interactions between the PI3 K and Raf signaling pathways can result in the transformation of hematopoietic cells. Cancer Detect Prev 25: 375–393.

    CAS  PubMed  Google Scholar 

  • McCubrey JA, Steelman LS, Abrams SL, Lee JT, Chang F, Bertrand FE et al. (2006). Roles of the RAF/MEK/ERK and PI3K/PTEN/AKT pathways in malignant transformation and drug resistance. Adv Enzyme Regul 46: 249–279.

    Article  CAS  PubMed  Google Scholar 

  • Mirza AM, Gysin S, Malek N, Nakayama K-I, Roberts JM, McMahon M . (2004). Cooperative regulation of the cell division cycle by the protein kinases RAF and AKT. Mol Cell Biol 24: 10868–10881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirza AM, Kohn AD, Roth RA, McMahon M . (2000). Oncogenic transformation of cells by a conditionally active form of the protein kinase Akt/PKB. Cell Growth Differ 11: 279–292.

    CAS  PubMed  Google Scholar 

  • Moelling K, Schad K, Bosse M, Zimmermann S, Schweneker M . (2002). Regulation of Raf-Akt cross-talk. J Biol Chem 277: 31099–31106.

    Article  CAS  PubMed  Google Scholar 

  • Morgenstern JP, Land H . (1990). Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res 18: 3587–3596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nheu T, He H, Hirokawa Y, Walker F, Wood J, Maruta H . (2004). PAK is essential for RAS-induced upregulation of cyclin D1 during the G1 to S transition. Cell Cycle 3: 71–74.

    Article  CAS  PubMed  Google Scholar 

  • Roberts PJ, Der CJ . (2007). Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26: 3291–3310.

    Article  CAS  PubMed  Google Scholar 

  • Shelton JG, Blalock WL, White ER, Steelman LS, McCubrey JA . (2004). Ability of the activated PI3K/Akt oncoproteins to synergize with MEK1 and induce cell cycle progression and abrogate the cytokine-dependence of hematopoietic cells. Cell Cycle 3: 503–512.

    CAS  PubMed  Google Scholar 

  • Sheng H, Shao J, DuBois RN . (2001). Akt/PKB activity is required for Ha-Ras-mediated transformation of intestinal epithelial cells. J Biol Chem 276: 14498–14504.

    Article  CAS  PubMed  Google Scholar 

  • Somanath PR, Byzova TV . (2009). 14-3-3beta-Rac1-p21 activated kinase signaling regulates Akt1-mediated cytoskeletal organization, lamellipodia formation and fibronectin matrix assembly. J Cell Physiol 218: 394–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stokoe D, Macdonald SG, Cadwallader K, Symons M, Hancock JF . (1994). Activation of Raf as a result of recruitment to the plasma membrane. Science 264: 1463–1467.

    Article  CAS  PubMed  Google Scholar 

  • Sun H, King AJ, Diaz HB, Marshall MS . (2000). Regulation of the protein kinase Raf-1 by oncogenic Ras through phosphatidylinositol 3-kinase, Cdc42/Rac and Pak. Current Biology 10: 281–284.

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Chen Z, Ambrose D, Liu J, Gibbs JB, Chernoff J et al. (1997). Kinase-deficient Pak1 mutants inhibit Ras transformation of Rat-1 fibroblasts. Mol Cell Biol 17: 4454–4464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinberg RA . (2007). The Biology of Cancer. Garland Science: New York.

    Google Scholar 

  • Yuan TL, Cantley LC . (2008). PI3K pathway alterations in cancer: variations on a theme. Oncogene 27: 5497–5510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmermann S, Moelling K . (1999). Phosphorylation and regulation of Raf by Akt (protein kinase B). Science 286: 1741–1744.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Nikolay Neznanov for the Ets-reporter construct, Dr Channing Der for RIE-1 cells, Dr George Stark for the MEF cells and Dr Nissim Hay for various Akt-expressing constructs. This work was supported by the Howard Temin Award to ESK, NIH Grant HL071625 to TB and American Heart Association grant 0830326N to PRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E S Kandel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Somanath, P., Vijai, J., Kichina, J. et al. The role of PAK-1 in activation of MAP kinase cascade and oncogenic transformation by Akt. Oncogene 28, 2365–2369 (2009). https://doi.org/10.1038/onc.2009.114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.114

Keywords

This article is cited by

Search

Quick links