Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Transgenic expression of the forkhead box M1 transcription factor induces formation of lung tumors

Abstract

The forkhead box m1 (Foxm1 or Foxm1b) protein (previously called HFH-11B, Trident, Win or MPP2) is abundantly expressed in human non-small cell lung cancers where it transcriptionally induces expression of genes essential for proliferation of tumor cells. In this study, we used Rosa26-Foxm1 transgenic mice, in which the Rosa26 promoter drives ubiquitous expression of Foxm1 transgene, to identify new signaling pathways regulated by Foxm1. Lung tumors were induced in Rosa26-Foxm1 mice using the 3-methylcholanthrene (MCA)/butylated hydroxytoluene (BHT) lung tumor initiation/promotion protocol. Tumors from MCA/BHT-treated Rosa26-Foxm1 mice displayed a significant increase in the number, size and DNA replication compared to wild-type mice. Elevated tumor formation in Rosa26-Foxm1 transgenic lungs was associated with persistent pulmonary inflammation, macrophage infiltration and increased expression of cyclooxygenase-2 (Cox-2), Cdc25C phosphatase, cyclin E2, chemokine ligands CXCL5, CXCL1 and CCL3, cathepsins and matrix metalloprotease-12. Cell culture experiments with A549 human lung adenocarcinoma cells demonstrated that depletion of Foxm1 by either short interfering RNA transfection or treatment with Foxm1-inhibiting ARF 26-44 peptide significantly reduced Cox-2 expression. In co-transfection experiments, Foxm1 protein-induced Cox-2 promoter activity and directly bound to the −2566/−2580 bp region of human Cox-2 promoter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Acuff HB, Sinnamon M, Fingleton B, Boone B, Levy SE, Chen X et al. (2006). Analysis of host- and tumor-derived proteinases using a custom dual species microarray reveals a protective role for stromal matrix metalloproteinase-12 in non-small cell lung cancer. Cancer Res 66: 7968–7975.

    Article  CAS  Google Scholar 

  • Blaine SA, Meyer AM, Hurteau G, Wick M, Hankin JA, Murphy RC et al. (2005). Targeted over-expression of mPGES-1 and elevated PGE2 production is not sufficient for lung tumorigenesis in mice. Carcinogenesis 26: 209–217.

    Article  CAS  Google Scholar 

  • Bratt T . (2000). Lipocalins and cancer. Biochim Biophys Acta 1482: 318–326.

    Article  CAS  Google Scholar 

  • Chang MS, Chen BC, Yu MT, Sheu JR, Chen TF, Lin CH . (2005). Phorbol 12-myristate 13-acetate upregulates cyclooxygenase-2 expression in human pulmonary epithelial cells via Ras, Raf-1, ERK, and NF-kappaB, but not p38 MAPK, pathways. Cell Signal 17: 299–310.

    Article  CAS  Google Scholar 

  • Chun KS, Surh YJ . (2004). Signal transduction pathways regulating cyclooxygenase-2 expression: potential molecular targets for chemoprevention. Biochem Pharmacol 68: 1089–1100.

    Article  CAS  Google Scholar 

  • Clark KL, Halay ED, Lai E, Burley SK . (1993). Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5. Nature 364: 412–420.

    Article  CAS  Google Scholar 

  • Clevidence DE, Overdier DG, Tao W, Qian X, Pani L, Lai E et al. (1993). Identification of nine tissue-specific transcription factors of the hepatocyte nuclear factor 3/forkhead DNA-binding-domain family. Proc Natl Acad Sci USA 90: 3948–3952.

    Article  CAS  Google Scholar 

  • Costa RH, Kalinichenko VV, Major ML, Raychaudhuri P . (2005). New and unexpected: forkhead meets ARF. Curr Opin Genet Dev 15: 42–48.

    Article  CAS  Google Scholar 

  • Giaccone G . (1996). Oncogenes and antioncogenes in lung tumorigenesis. Chest 109: 130S–134S.

    Article  CAS  Google Scholar 

  • Gusarova GA, Wang IC, Major ML, Kalinichenko VV, Ackerson T, Petrovic V et al. (2007). A cell-penetrating ARF peptide inhibitor of FoxM1 in mouse hepatocellular carcinoma treatment. J Clin Invest 117: 99–111.

    Article  CAS  Google Scholar 

  • Kalin TV, Wang IC, Ackerson TJ, Major ML, Detrisac CJ, Kalinichenko VV et al. (2006). Increased levels of the FoxM1 transcription factor accelerate development and progression of prostate carcinomas in both TRAMP and LADY transgenic mice. Cancer Res 66: 1712–1720.

    Article  CAS  Google Scholar 

  • Kalinichenko VV, Gusarova GA, Tan Y, Wang IC, Major ML, Wang X et al. (2003). Ubiquitous expression of the forkhead box M1B transgene accelerates proliferation of distinct pulmonary cell-types following lung injury. J Biol Chem 278: 37888–37894.

    Article  CAS  Google Scholar 

  • Kalinichenko VV, Lim L, Beer-Stoltz D, Shin B, Rausa FM, Clark J et al. (2001a). Defects in pulmonary vasculature and perinatal lung hemorrhage in mice heterozygous null for the forkhead Box f1 transcription factor. Dev Biol 235: 489–506.

    Article  CAS  Google Scholar 

  • Kalinichenko VV, Lim L, Shin B, Costa RH . (2001b). Differential expression of forkhead box transcription factors following butylated hydroxytoluene lung injury. Am J Physiol Lung Cell Mol Physiol 280: L695–L704.

    Article  CAS  Google Scholar 

  • Kalinichenko VV, Major M, Wang X, Petrovic V, Kuechle J, Yoder HM et al. (2004). Forkhead Box m1b transcription factor is essential for development of hepatocellular carcinomas and is negatively regulated by the p19arf tumor suppressor. Genes Dev 18: 830–850.

    Article  CAS  Google Scholar 

  • Kim IM, Ackerson T, Ramakrishna S, Tretiakova M, Wang IC, Kalin TV et al. (2006). The forkhead Box m1 transcription factor stimulates the proliferation of tumor cells during development of lung cancer. Cancer Res 66: 2153–2161.

    Article  CAS  Google Scholar 

  • Kim IM, Ramakrishna S, Gusarova GA, Yoder HM, Costa RH, Kalinichenko VV . (2005a). The forkhead box M1 transcription factor is essential for embryonic development of pulmonary vasculature. J Biol Chem 280: 22278–22286.

    Article  CAS  Google Scholar 

  • Kim IM, Zhou Y, Ramakrishna S, Hughes DE, Solway J, Costa RH et al. (2005b). Functional characterization of evolutionarily conserved DNA regions in forkhead box f1 gene locus. J Biol Chem 280: 37908–37916.

    Article  CAS  Google Scholar 

  • Korver W, Roose J, Clevers H . (1997). The winged-helix transcription factor trident is expressed in cycling cells. Nucleic Acids Res 25: 1715–1719.

    Article  CAS  Google Scholar 

  • Krupczak-Hollis K, Wang X, Kalinichenko VV, Gusarova GA, Wang I-C, Dennewitz MB et al. (2004). The mouse forkhead Box m1 transcription factor is essential for hepatoblast mitosis and development of intrahepatic bile ducts and vessels during liver morphogenesis. Dev Biol 276: 74–88.

    Article  CAS  Google Scholar 

  • Kulbe H, Levinson NR, Balkwill F, Wilson JL . (2004). The chemokine network in cancer—much more than directing cell movement. Int J Dev Biol 48: 489–496.

    Article  CAS  Google Scholar 

  • Lee JS, Chu IS, Heo J, Calvisi DF, Sun Z, Roskams T et al. (2004). Classification and prediction of survival in hepatocellular carcinoma by gene expression profiling. Hepatology 40: 667–676.

    Article  CAS  Google Scholar 

  • Ma RY, Tong TH, Cheung AM, Tsang AC, Leung WY, Yao KM . (2005). Raf/MEK/MAPK signaling stimulates the nuclear translocation and transactivating activity of FOXM1c. J Cell Sci 118: 795–806.

    Article  CAS  Google Scholar 

  • Major ML, Lepe R, Costa RH . (2004). Forkhead Box M1B (FoxM1B) transcriptional activity requires binding of Cdk/Cyclin complexes for phosphorylation-dependent recruitment of p300/CBP Co-activators. Mol Cell Biol 24: 2649–2661.

    Article  CAS  Google Scholar 

  • Malkinson AM . (1998). Molecular comparison of human and mouse pulmonary adenocarcinomas. Exp Lung Res 24: 541–555.

    Article  CAS  Google Scholar 

  • Malkinson AM, Koski KM, Evans WA, Festing MF . (1997). Butylated hydroxytoluene exposure is necessary to induce lung tumors in BALB mice treated with 3-methylcholanthrene. Cancer Res 57: 2832–2834.

    CAS  PubMed  Google Scholar 

  • McCormick F . (1999). Signalling networks that cause cancer. Trends Cell Biol 9: M53–M56.

    Article  CAS  Google Scholar 

  • Mitsuuchi Y, Testa JR . (2002). Cytogenetics and molecular genetics of lung cancer. Am J Med Genet 115: 183–188.

    Article  Google Scholar 

  • Nilsson I, Hoffmann I . (2000). Cell cycle regulation by the Cdc25 phosphatase family. Prog Cell Cycle Res 4: 107–114.

    Article  CAS  Google Scholar 

  • Obama K, Ura K, Li M, Katagiri T, Tsunoda T, Nomura A et al. (2005). Genome-wide analysis of gene expression in human intrahepatic cholangiocarcinoma. Hepatology 41: 1339–1348.

    Article  CAS  Google Scholar 

  • Park HJ, Wang Z, Costa RH, Tyner A, Lau LF, Raychaudhuri P . (2007). An N-terminal inhibitory domain modulates activity of FoxM1 during cell cycle. Oncogene 27: 1696–1704.

    Article  Google Scholar 

  • Parkin DM, Bray F, Ferlay J, Pisani P . (2005). Global cancer statistics, 2002. CA Cancer J Clin 55: 74–108.

    Article  Google Scholar 

  • Pilarsky C, Wenzig M, Specht T, Saeger HD, Grutzmann R . (2004). Identification and validation of commonly overexpressed genes in solid tumors by comparison of microarray data. Neoplasia 6: 744–750.

    Article  CAS  Google Scholar 

  • Riedl K, Krysan K, Pold M, Dalwadi H, Heuze-Vourc'h N, Dohadwala M et al. (2004). Multifaceted roles of cyclooxygenase-2 in lung cancer. Drug Resist Updat 7: 169–184.

    Article  CAS  Google Scholar 

  • Sherr CJ, McCormick F . (2002). The RB and p53 pathways in cancer. Cancer Cell 2: 103–112.

    Article  CAS  Google Scholar 

  • Teh MT, Wong ST, Neill GW, Ghali LR, Philpott MP, Quinn AG . (2002). FOXM1 Is a downstream target of Gli1 in basal cell carcinomas. Cancer Res 62: 4773–4780.

    CAS  Google Scholar 

  • Toloza EM, Morse MA, Lyerly HK . (2006). Gene therapy for lung cancer. J Cell Biochem 99: 1–22.

    Article  CAS  Google Scholar 

  • Tong M, Ding Y, Tai HH . (2006). Reciprocal regulation of cyclooxygenase-2 and 15-hydroxyprostaglandin dehydrogenase expression in A549 human lung adenocarcinoma cells. Carcinogenesis 27: 2170–2179.

    Article  CAS  Google Scholar 

  • van den Boom J, Wolter M, Kuick R, Misek DE, Youkilis AS, Wechsler DS et al. (2003). Characterization of gene expression profiles associated with glioma progression using oligonucleotide-based microarray analysis and real-time reverse transcription-polymerase chain reaction. Am J Pathol 163: 1033–1043.

    Article  CAS  Google Scholar 

  • Wang IC, Chen YJ, Hughes D, Petrovic V, Major ML, Park HJ et al. (2005). Forkhead box M1 regulates the transcriptional network of genes essential for mitotic progression and genes encoding the SCF (Skp2-Cks1) ubiquitin ligase. Mol Cell Biol 25: 10875–10894.

    Article  CAS  Google Scholar 

  • Wender PA, Mitchell DJ, Pattabiraman K, Pelkey ET, Steinman L, Rothbard JB . (2000). The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc Natl Acad Sci USA 97: 13003–13008.

    Article  CAS  Google Scholar 

  • Wolters PJ, Chapman HA . (2000). Importance of lysosomal cysteine proteases in lung disease. Respir Res 1: 170–177.

    Article  CAS  Google Scholar 

  • Wonsey DR, Follettie MT . (2005). Loss of the forkhead transcription factor FoxM1 causes centrosome amplification and mitotic catastrophe. Cancer Res 65: 5181–5189.

    Article  CAS  Google Scholar 

  • Ye H, Holterman A, Yoo KW, Franks RR, Costa RH . (1999). Premature expression of the winged helix transcription factor HFH-11B in regenerating mouse liver accelerates hepatocyte entry into S-phase. Mol Cell Biol 19: 8570–8580.

    Article  CAS  Google Scholar 

  • Ye H, Kelly TF, Samadani U, Lim L, Rubio S, Overdier DG et al. (1997). Hepatocyte nuclear factor 3/fork head homolog 11 is expressed in proliferating epithelial and mesenchymal cells of embryonic and adult tissues. Mol Cell Biol 17: 1626–1641.

    Article  CAS  Google Scholar 

  • Zhao YY, Gao XP, Zhao YD, Mirza MK, Frey RS, Kalinichenko VV et al. (2006). Endothelial cell-restricted disruption of FoxM1 impairs endothelial repair following LPS-induced vascular injury. J Clin Invest 116: 2333–2343.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S Ramakrishna and IM Kim for technical help, Lloyd Graf for useful comments and Jane Costa for editorial assistance. This work was supported by the Research Grant 06-09 from the American Cancer Society, Illinois Division (VVK), US Public Health Service Grant DK 54687-06 (RHC) and Research Scholar Grant RSG-06-187-01 from the American Cancer Society, National office (VVK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T V Kalin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, IC., Meliton, L., Tretiakova, M. et al. Transgenic expression of the forkhead box M1 transcription factor induces formation of lung tumors. Oncogene 27, 4137–4149 (2008). https://doi.org/10.1038/onc.2008.60

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.60

Keywords

This article is cited by

Search

Quick links