Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The cell cycle checkpoint kinase CHK2 mediates DNA damage-induced stabilization of TTK/hMps1

Abstract

Cell cycle progression is monitored constantly to ensure faithful passage of genetic codes and genome stability. We have demonstrated previously that, upon DNA damage, TTK/hMps1 activates the checkpoint kinase CHK2 by phosphorylating CHK2 at Thr68. However, it remains to be determined whether and how TTK/hMps1 responds to DNA damage. In this report, we present evidence that TTK/hMps1 can be induced by DNA damage in normal human fibroblasts. Interestingly, the induction depends on CHK2 because CHK2-targeting small interfering RNA or a CHK2 inhibitor abolishes the increase. Such induction is mediated through phosphorylation of TTK/hMps1 at Thr288 by CHK2 and requires the CHK2 SQ/TQ cluster domain/forkhead-associated domain. In cells, TTK/hMps1 phosphorylation at Thr288 is induced by DNA damage and forms nuclear foci, which colocalize partially with γ-H2AX. Reexpression of TTK/hMps1 T288A mutant in TTK/hMps1-knockdown cells causes a defect in G2/M arrest, suggesting that phosphorylation at this site participates in the proper checkpoint execution. Our study uncovered a regulatory loop between TTK/hMps1 and CHK2 whereby DNA damage-activated CHK2 may facilitate the stabilization of TTK/hMps1, therefore maintaining the checkpoint control.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Abrieu A, Magnaghi-Jaulin L, Kahana JA, Peter M, Castro A, Vigneron S et al. (2001). Mps1 is a kinetochore-associated kinase essential for the vertebrate mitotic checkpoint. Cell 106: 83–93.

    Article  CAS  PubMed  Google Scholar 

  • Allen JB, Zhou X, Siede W, Friedberg EC, Elledge SJ . (1994). The SAD1/RAD53 protein kinase controls multiple checkpoints and DNA damage-induced transcription in yeast. Genes Dev 8: 2401–2415.

    Article  CAS  PubMed  Google Scholar 

  • Antoni L, Sodha N, Collins I, Garrett MD . (2007). CHK2 kinase: cancer susceptibility and cancer therapy—two sides of the same coin? Nat Rev Cancer 7: 925–936.

    Article  CAS  PubMed  Google Scholar 

  • Bartek J, Lukas J . (2007). DNA damage checkpoints: from initiation to recovery or adaptation. Curr Opin Cell Biol 19: 238–245.

    Article  CAS  PubMed  Google Scholar 

  • Branzei D, Foiani M . (2005). The DNA damage response during DNA replication. Curr Opin Cell Biol 17: 568–575.

    Article  CAS  PubMed  Google Scholar 

  • Cui Y, Guadagno TM . (2008). B-RafV600E signaling deregulates the mitotic spindle checkpoint through stabilizing Mps1 levels in melanoma cells. Oncogene 27: 3122–3133.

    Article  CAS  PubMed  Google Scholar 

  • de Cárcer G, de Castro IP, Malumbres M . (2007). Targeting cell cycle kinases for cancer therapy. Curr Med Chem 14: 969–985.

    Article  PubMed  Google Scholar 

  • Dimitrova DS, Gilbert DM . (2000). Stability and nuclear distribution of mammalian replication protein A heterotrimeric complex. Exp Cell Res 254: 321–327.

    Article  CAS  PubMed  Google Scholar 

  • Douville EMJ, Afar DEE, Howell BW, Letwin K, Tannock L, Ben-David Y et al. (1992). Multiple cDNAs encoding the esk kinase predict transmembrane and intracellular enzyme isoforms. Mol Cell Biol 12: 2681–2689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enders GH, Maude SL . (2006). Traffic safety for the cell: influence of cyclin-dependent kinase activity on genomic stability. Gene 371: 1–6.

    Article  CAS  PubMed  Google Scholar 

  • Fischer MG, Heeger S, Hacker U, Lehner CF . (2004). The mitotic arrest in response to hypoxia and of polar bodies during early embryogenesis requires Drosophila Mps1. Curr Biol 14: 2019–2024.

    Article  CAS  PubMed  Google Scholar 

  • Fisk HA, Mattison C, Winey M . (2003). Human Mps1 protein kinase is required for centrosome duplication and normal mitotic progression. Proc Natl Acad Sci USA 100: 14875–14880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisk HA, Mattison CP, Winey M . (2004). A field guide to the Mps1 family of protein kinases. Cell Cycle 3: 439–442.

    Article  CAS  PubMed  Google Scholar 

  • Fisk HA, Winey M . (2001). The mouse Mps1p-like kinase regulates centrosome duplication. Cell 106: 95–104.

    Article  CAS  PubMed  Google Scholar 

  • He X, Jones MH, Winey M, Sazer S . (1998). mph1, a member of the Mps1-like family of dual specificity protein kinases, is required for the spindle checkpoint in S. pombe. J Cell Sci 111: 1635–1647.

    CAS  PubMed  Google Scholar 

  • Hogg D, Guidos C, Bailey D, Amendola A, Groves T, Damidson J et al. (1994). Cell cycle dependent regulation of the protein kinase TTK. Oncogene 9: 89–96.

    CAS  PubMed  Google Scholar 

  • Hurley PJ, Bunz F . (2007). ATM and ATR. Cell Cycle 6: 414–417.

    Article  CAS  PubMed  Google Scholar 

  • Iliakis G, Wang Y, Guan J, Wang H . (2003). DNA damage checkpoint control in cells exposed to ionizing radiation. Oncogene 22: 5834–5847.

    Article  CAS  PubMed  Google Scholar 

  • Jaspersen SL, Huneycutt BJ, Giddings TH, Resing KA, Ahn NG, Winey M . (2004). Cdc28/Cdk1 regulates spindle pole body duplication through phosphorylation of Spc42 and Mps1. Dev Cell 7: 263–274.

    Article  CAS  PubMed  Google Scholar 

  • Jelluma N, Brenkman AB, van den Broek NJF, Cruijsen CWA, van Osch MHJ, Lens SMA et al. (2008). Mps1 phosphorylates Borealin to control aurora B activity and chromosome alignment. Cell 132: 233–246.

    Article  CAS  PubMed  Google Scholar 

  • Kang J, Chen Y, Zhao Y, Yu H . (2007). Autophosphorylation-dependent activation of human Mps1 is required for the spindle checkpoint. Proc Natl Acad Sci USA 104: 20232–20237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasbek C, Yang C-H, Yusof AM, Chapman HM, Winey M, Fisk HA . (2007). Preventing the degradation of Mps1 at centrosomes is sufficient to cause centrosome reduplication in human cells. Mol Biol Cell 18: 4457–4469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JS, Collins KM, Brown AL, Lee CH, Chung JH . (2000). hCds1-mediated phosphorylation of BRCA1 regulates the DNA damage response. Nature 404: 201–204.

    Article  CAS  PubMed  Google Scholar 

  • Lindberg RA, Fischer WH, Hunter T . (1993). Characterization of a human protein threonine kinase isolated by screening an expression library with antibodies to phosphotyrosine. Oncogene 8: 351–359.

    CAS  PubMed  Google Scholar 

  • Mattison CP, Old WM, Steiner E, Huneycutt BJ, Resing KA, Ahn NG et al. (2007). Mps1 activation loop autophosphorylation enhances kinase activity. J Biol Chem 282: 30553–30561.

    Article  CAS  PubMed  Google Scholar 

  • Mills GB, Schmandt R, McGill M, Amendola A, Hill M, Jacobs K et al. (1992). Expression of TTK, a novel human protein kinase, is associated with cell proliferation. J Biol Chem 267: 16000–16006.

    CAS  PubMed  Google Scholar 

  • Murakami H, Okayama H . (1995). A kinase from fission yeast responsible for blocking mitosis in S phase. Nature 374: 817–819.

    Article  CAS  PubMed  Google Scholar 

  • Niida H, Nakanishi M . (2006). DNA damage checkpoints in mammals. Mutagenesis 21: 3–9.

    Article  CAS  PubMed  Google Scholar 

  • Poss KD, Nechiporuk A, Hillam AM, Johnson SL, Keating MT . (2002). Mps1 defines a proximal blastemal proliferative compartment essential for zebrafish fin regeneration. Development 129: 5141–5149.

    CAS  PubMed  Google Scholar 

  • Poss KD, Nechiporuk A, Stringer KF, Lee C, Keating MT . (2004). Germ cell aneuploidy in zebrafish with mutations in the mitotic checkpoint gene mps1. Genes Dev 18: 1527–1532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shieh S-Y, Ahn J, Tamai K, Taya Y, Prives C . (2000). The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev 14: 289–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Straight PD, Giddings Jr TH, Winey M . (2000). Mps1p regulates meiotic spindle pole body duplication in addition to having novel roles during sporulation. Mol Biol Cell 11: 3525–3537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stucke VM, Baumann C, Nigg EA . (2004). Kinetochore localization and microtubule interaction of the human spindle checkpoint kinase Mps1. Chromosoma 113: 1–15.

    Article  CAS  PubMed  Google Scholar 

  • Stucke VM, Sillje HHW, Arnaud L, Nigg EA . (2002). Human Mps1 kinase is required for the spindle assembly checkpoint but not for centrosome duplication. EMBO J 21: 1723–1732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vigneron S, Prieto S, Bernis C, Labbé J-C, Castro A, Lorca T . (2004). Kinetochore localization of spindle checkpoint proteins: who controls whom? Mol Biol Cell 15: 4584–4596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H-C, Chou W-C, Shieh S-Y, Shen C-Y . (2006). Ataxia telangiectasia mutated and checkpoint kinase 2 regulate BRCA1 to promote the fidelity of DNA end-joining. Cancer Res 66: 1391–1400.

    Article  CAS  PubMed  Google Scholar 

  • Ward IM, Wu X, Chen J . (2001). Threonine 68 of Chk2 is phosphorylated at sites of DNA strand breaks. J Biol Chem 276: 47755–47758.

    Article  CAS  PubMed  Google Scholar 

  • Wei J-H, Chou Y-F, Ou Y-H, Yeh Y-H, Tyan S-W, Sun T-P et al. (2005). TTK/hMps1 participates in the regulation of DNA damage checkpoint response by phosphorylating CHK2 on Threonine 68. J Biol Chem 280: 7748–7757.

    Article  CAS  PubMed  Google Scholar 

  • Weiss E, Winey M . (1996). The Saccharomyces cerevisiae spindle pole body duplication gene MPS1 is part of a mitotic checkpoint. J Cell Biol 132: 111–123.

    Article  CAS  PubMed  Google Scholar 

  • Winey M, Goetsch L, Baum P, Byers B . (1991). MPS1 and MPS2: novel yeast genes defining distinct steps of spindle pole body duplication. J Cell Biol 114: 745–754.

    Article  CAS  PubMed  Google Scholar 

  • Winey M, Huneycutt BJ . (2002). Centrosomes and checkpoints: the MPS1 family of kinases. Oncogene 21: 6161–6169.

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Tsvetkov LM, Stern DF . (2002). Chk2 activation and phosphorylation-dependent oligomerization. Mol Cell Biol 22: 4419–4432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Chen R-H . (2006). Mps1 phosphorylation by MAP kinase is required for kinetochore localization of spindle-checkpoint proteins. Curr Biol 16: 1764–1769.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the LC/MS/MS core of the Institute of Biomedical Sciences for the expert assistance in mass spectrometry. This work was supported by grants from Academia Sinica and National Science Council of Taiwan to S-Y Shieh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S-Y Shieh.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeh, YH., Huang, YF., Lin, TY. et al. The cell cycle checkpoint kinase CHK2 mediates DNA damage-induced stabilization of TTK/hMps1. Oncogene 28, 1366–1378 (2009). https://doi.org/10.1038/onc.2008.477

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.477

Keywords

This article is cited by

Search

Quick links