Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Autotaxin protects MCF-7 breast cancer and MDA-MB-435 melanoma cells against Taxol-induced apoptosis

Abstract

Autotaxin (ATX) promotes cancer cell survival, growth, migration, invasion and metastasis. ATX converts extracellular lysophosphatidylcholine (LPC) into lysophosphatidate (LPA). As these lipids have been reported to affect cell signaling through their own G-protein-coupled receptors, ATX could modify the balance of this signaling. Also, ATX affects cell adhesion independently of its catalytic activity. We investigated the interactions of ATX, LPC and LPA on the apoptotic effects of Taxol, which is commonly used in breast cancer treatment. LPC had no significant effect on Taxol-induced apoptosis in MCF-7 breast cancer cells, which do not secrete significant ATX. Addition of incubation medium from MDA-MB-435 melanoma cells, which secrete ATX, or recombinat ATX enabled LPC to inhibit Taxol-induced apoptosis of MCF-7 cells. Inhibiting ATX activity blocked this protection against apoptosis. We conclude that LPC has no significant effect in protecting MCF-7 cells against Taxol treatment unless it is converted to LPA by ATX. LPA strongly antagonized Taxol-induced apoptosis through stimulating phosphatidylinositol 3-kinase and inhibiting ceramide formation. LPA also partially reversed the Taxol-induced arrest in the G2/M phase of the cell cycle. Our results support the hypothesis that therapeutic inhibition of ATX activity could improve the efficacy of Taxol as a chemotherapeutic agent for cancer treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Abbreviations

ATX:

autotaxin

DAPI:

4,6-diamidino-2-phenylindole

FBS:

fetal bovine serum

LPA:

lysophosphatidate

LPC:

lysophosphatidylcholine

MAPK:

mitogen-activated protein kinase

PI3K:

phosphatidylinositol 3-kinase

TMRE:

tetramethlyrhodamine ethyl ester

References

  • Aoki J, Taira A, Takanezawa Y, Kishi Y, Hama K, Kishimoto T et al. (2002). Serum lysophosphatidic acid is produced through diverse phospholipase pathways. J Biol Chem 277: 48737–48744.

    Article  CAS  PubMed  Google Scholar 

  • Asakuma J, Sumitomo M, Asano T, Asano T, Hayakawa M (2003). Selective Akt inactivation and tumor necrosis actor-related apoptosis-inducing ligand sensitization of renal cancer cells by low concentrations of paclitaxel. Cancer Res 63: 1365–1370.

    CAS  PubMed  Google Scholar 

  • Baudhuin LM, Cristina KL, Lu J, Xu Y . (2002). Akt activation induced by lysophosphatidic acid and sphingosine-1-phosphate requires both mitogen-activated protein kinase kinase and p38 mitogen-activated protein kinase and is cell-line specific. Mol Pharmacol 62: 660–671.

    Article  CAS  PubMed  Google Scholar 

  • Bergstralh DT, Ting JP . (2006). Microtubule stabilizing agents: their molecular signaling consequences and the potential for enhancement by drug combination. Cancer Treat Rev 32: 166–179.

    Article  CAS  PubMed  Google Scholar 

  • Brindley DN . (1993). Hepatic secretion of lysphosphatidylcholine: a novel transport system for polyunsaturated fatty acids and choline. J Nutr Biochem 4: 442–449.

    Article  CAS  Google Scholar 

  • Brindley DN . (2004). Lipid phosphate phosphatases and related proteins: signaling functions in development, cell division, and cancer. J Cell Biochem 92: 900–912.

    Article  CAS  PubMed  Google Scholar 

  • Chappell J, Leitner JW, Solomon S, Golovchenko I, Goalstone ML, Draznin B . (2001). Effect of insulin on cell cycle progression in MCF-7 breast cancer cells. Direct and potentiating influence. J Biol Chem 276: 38023–38028.

    Article  CAS  PubMed  Google Scholar 

  • Charles AG, Han TY, Liu YY, Hansen N, Giuliano AE, Cabot MC . (2001). Taxol-induced ceramide generation and apoptosis in human breast cancer cells. Cancer Chemother Pharmacol 47: 444–450.

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Towers LN, O'Connor KL . (2007). LPA2 (EDG4) mediates Rho-dependent chemotaxis with lower efficacy than LPA1 (EDG2) in breast carcinoma cells. Am J Physiol Cell Physiol 292: C1927–C1933.

    Article  CAS  PubMed  Google Scholar 

  • Clair T, Aoki J, Koh E, Bandle RW, Nam SW, Ptaszynska MM et al. (2003). Autotaxin hydrolyzes sphingosylphosphorylcholine to produce the regulator of migration, sphingosine-1-phosphate. Cancer Res 63: 5446–5453.

    CAS  PubMed  Google Scholar 

  • Contos JJ, Fukushima N, Weiner JA, Kaushal D, Chun J . (2000). Requirement for the lpA1 lysophosphatidic acid receptor gene in normal suckling behavior. Proc Natl Acad Sci USA 97: 13384–13389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Croset M, Brossard N, Polette A, Lagarde M . (2000). Characterization of plasma unsaturated lysophosphatidylcholines in human and rat. Biochem J 345 (Part 1): 61–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui P, Tomsig JL, McCalmont WF, Lee S, Becker CJ, Lynch KR et al. (2007). Synthesis and biological evaluation of phosphonate derivatives as autotaxin (ATX) inhibitors. Bioorg Med Chem Lett 17: 1634–1640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demidenko ZN, Kalurupalle S, Hanko C, Lim CU, Broude E, Blagosklonny MV . (2008). Mechanism of G1-like arrest by low concentrations of paclitaxel: next cell cycle p53-dependent arrest with sub G1 DNA content mediated by prolonged mitosis. Oncogene 27: 4402–4410.

    Article  CAS  PubMed  Google Scholar 

  • Dennis J, Nogaroli L, Fuss B . (2005). Phosphodiesterase-Ialpha/autotaxin (PD-Ialpha/ATX): a multifunctional protein involved in central nervous system development and disease. J Neurosci Res 82: 737–742.

    Article  CAS  PubMed  Google Scholar 

  • Dufour G, Demers MJ, Gagne D, Dydensborg AB, Teller IC, Bouchard V et al. (2004). Human intestinal epithelial cell survival and anoikis. Differentiation state-distinct regulation and roles of protein kinase B/Akt isoforms. J Biol Chem 279: 44113–44122.

    Article  CAS  PubMed  Google Scholar 

  • Fang X, Schummer M, Mao M, Yu S, Tabassam FH, Swaby R et al. (2002). Lysophosphatidic acid is a bioactive mediator in ovarian cancer. Biochim Biophys Acta 1582: 257–264.

    Article  CAS  PubMed  Google Scholar 

  • Fang X, Yu S, LaPushin R, Lu Y, Furui T, Penn LZ et al. (2000). Lysophosphatidic acid prevents apoptosis in fibroblasts via G(i)-protein-mediated activation of mitogen-activated protein kinase. Biochem J 352 (Part 1): 135–143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferry G, Moulharat N, Pradere JP, Desos P, Try A, Genton A et al. (2008). S32826: a nanomolar inhibitor of autotaxin. Discovery, synthesis and applications as a pharmacological tool. J Pharmacol Exp Ther 327: 809–819.

    Article  CAS  PubMed  Google Scholar 

  • Fox MA, Alexander JK, Afshari FS, Colello RJ, Fuss B . (2004). Phosphodiesterase-I alpha/autotaxin controls cytoskeletal organization and FAK phosphorylation during myelination. Mol Cell Neurosci 27: 140–150.

    Article  CAS  PubMed  Google Scholar 

  • Frankel A, Mills GB . (1996). Peptide and lipid growth factors decrease cis-diamminedichloroplatinum-induced cell death in human ovarian cancer cells. Clin Cancer Res 2: 1307–1313.

    CAS  PubMed  Google Scholar 

  • Furui T, LaPushin R, Mao M, Khan H, Watt SR, Watt MA et al. (1999). Overexpression of edg-2/vzg-1 induces apoptosis and anoikis in ovarian cancer cells in a lysophosphatidic acid- independent manner. Clin Cancer Res 5: 4308–4318.

    CAS  PubMed  Google Scholar 

  • Gauthier R, Harnois C, Drolet JF, Reed JC, Vezina A, Vachon PH . (2001). Human intestinal epithelial cell survival: differentiation state-specific control mechanisms. Am J Physiol Cell Physiol 280: C1540–C1554.

    Article  CAS  PubMed  Google Scholar 

  • Goetzl EJ, Dolezalova H, Kong Y, Hu YL, Jaffe RB, Kalli KR et al. (1999a). Distinctive expression and functions of the type 4 endothelial differentiation gene-encoded G protein-coupled receptor for lysophosphatidic acid in ovarian cancer. Cancer Res 59: 5370–5375.

    CAS  PubMed  Google Scholar 

  • Goetzl EJ, Kong Y, Mei B . (1999b). Lysophosphatidic acid and sphingosine 1-phosphate protection of T cells from apoptosis in association with suppression of Bax. J Immunol 162: 2049–2056.

    CAS  PubMed  Google Scholar 

  • Hama K, Aoki J, Fukaya M, Kishi Y, Sakai T, Suzuki R et al. (2004). Lysophosphatidic acid and autotaxin stimulate cell motility of neoplastic and non-neoplastic cells through LPA1. J Biol Chem 279: 17634–17639.

    Article  CAS  PubMed  Google Scholar 

  • Harnois C, Demers MJ, Bouchard V, Vallee K, Gagne D, Fujita N et al. (2004). Human intestinal epithelial crypt cell survival and death: complex modulations of Bcl-2 homologs by Fak, PI3-K/Akt-1, MEK/Erk, and p38 signaling pathways. J Cell Physiol 198: 209–222.

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Haney N, Kropp D, Kabore AF, Johnston JB, Gibson SB . (2005). Lysophosphatidic acid (LPA) protects primary chronic lymphocytic leukemia cells from apoptosis through LPA receptor activation of the anti-apoptotic protein AKT/PKB. J Biol Chem 280: 9498–9508.

    Article  CAS  PubMed  Google Scholar 

  • Inoue CN, Nagano I, Ichinohasama R, Asato N, Kondo Y, Iinuma K . (2001). Bimodal effects of platelet-derived growth factor on rat mesangial cell proliferation and death, and the role of lysophosphatidic acid in cell survival. Clin Sci (Lond) 101: 11–19.

    Article  CAS  Google Scholar 

  • Jasinska R, Zhang QX, Pilquil C, Singh I, Xu J, Dewald J et al. (1999). Lipid phosphate phosphohydrolase-1 degrades exogenous glycerolipid and sphingolipid phosphate esters. Biochem J 340 (Part 3): 677–686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C et al. (2006). Cancer statistics, 2006. CA Cancer J Clin 56: 106–130.

    Article  PubMed  Google Scholar 

  • Kabarowski JH, Zhu K, Le LQ, Witte ON, Xu Y . (2001). Lysophosphatidylcholine as a ligand for the immunoregulatory receptor G2A. Science 293: 702–705.

    Article  CAS  PubMed  Google Scholar 

  • Kim KS, Ren J, Jiang Y, Ebrahem Q, Tipps R, Cristina K et al. (2005). GPR4 plays a critical role in endothelial cell function and mediates the effects of sphingosylphosphorylcholine. FASEB J 19: 819–821.

    Article  CAS  PubMed  Google Scholar 

  • Koh JS, Lieberthal W, Heydrick S, Levine JS . (1998). Lysophosphatidic acid is a major serum noncytokine survival factor for murine macrophages which acts via the phosphatidylinositol 3-kinase signaling pathway. J Clin Invest 102: 716–727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krajewski S, Krajewska M, Turner BC, Pratt C, Howard B, Zapata JM et al. (1999). Prognostic significance of apoptosis regulators in breast cancer. Endocr Relat Cancer 6: 29–40.

    Article  CAS  PubMed  Google Scholar 

  • Lee CW, Rivera R, Gardell S, Dubin AE, Chun J . (2006). GPR92 as a new G12/13- and Gq-coupled lysophosphatidic acid receptor that increases cAMP, LPA5. J Biol Chem 281: 23589–23597.

    Article  CAS  PubMed  Google Scholar 

  • Levine JS, Koh JS, Triaca V, Lieberthal W . (1997). Lysophosphatidic acid: a novel growth and survival factor for renal proximal tubular cells. Am J Physiol 273: F575–F585.

    CAS  PubMed  Google Scholar 

  • Lin P, Ye RD . (2003). The lysophospholipid receptor G2A activates a specific combination of G proteins and promotes apoptosis. J Biol Chem 278: 14379–14386.

    Article  CAS  PubMed  Google Scholar 

  • Marchetti P, Urien S, Cappellini GA, Ronzino G, Ficorella C . (2002). Weekly administration of paclitaxel: theoretical and clinical basis. Crit Rev Oncol Hematol 44 (Suppl): S3–S13.

    Article  PubMed  Google Scholar 

  • Martin A, Duffy PA, Liossis C, Gomez-Munoz A, O'Brien L, Stone JC et al. (1997). Increased concentrations of phosphatidate, diacylglycerol and ceramide in ras- and tyrosine kinase (fps)-transformed fibroblasts. Oncogene 14: 1571–1580.

    Article  CAS  PubMed  Google Scholar 

  • McGrogan BT, Gilmartin B, Carney DN, McCann A . (2008). Taxanes, microtubules and chemoresistant breast cancer. Biochim Biophys Acta 1785: 96–132.

    CAS  PubMed  Google Scholar 

  • Melet A, Song K, Bucur O, Jagani Z, Grassian AR, Khosravi-Far R . (2008). Apoptotic pathways in tumor progression and therapy. Adv Exp Med Biol 615: 47–79.

    Article  CAS  PubMed  Google Scholar 

  • Mills GB, Moolenaar WH . (2003). The emerging role of lysophosphatidic acid in cancer. Nat Rev Cancer 3: 582–591.

    Article  CAS  PubMed  Google Scholar 

  • Moolenaar WH, van Meeteren LA, Giepmans BN . (2004). The ins and outs of lysophosphatidic acid signaling. Bioessays 26: 870–881.

    Article  CAS  PubMed  Google Scholar 

  • Murph MM, Hurst-Kennedy J, Newton V, Brindley DN, Radhakrishna H . (2007). Lysophosphatidic acid decreases the nuclear localization and cellular abundance of the p53 tumor suppressor in A549 lung carcinoma cells. Mol Cancer Res 5: 1201–1211.

    Article  CAS  PubMed  Google Scholar 

  • Nam SW, Clair T, Campo CK, Lee HY, Liotta LA, Stracke ML . (2000). Autotaxin (ATX), a potent tumor motogen, augments invasive and metastatic potential of ras-transformed cells. Oncogene 19: 241–247.

    Article  CAS  PubMed  Google Scholar 

  • Nam SW, Clair T, Kim YS, McMarlin A, Schiffmann E, Liotta LA et al. (2001). Autotaxin (NPP-2), a metastasis-enhancing motogen, is an angiogenic factor. Cancer Res 61: 6938–6944.

    CAS  PubMed  Google Scholar 

  • Pasternack SM, von Kugelgen I, Aboud KA, Lee YA, Ruschendorf F, Voss K et al. (2008). G protein-coupled receptor P2Y5 and its ligand LPA are involved in maintenance of human hair growth. Nat Genet 40: 329–334.

    Article  CAS  PubMed  Google Scholar 

  • Pilquil C, Dewald J, Cherney A, Gorshkova I, Tigyi G, English D et al. (2006). Lipid phosphate phosphatase-1 regulates lysophosphatidate-induced fibroblast migration by controlling phospholipase D2-dependent phosphatidate generation. J Biol Chem 281: 38418–38429.

    Article  CAS  PubMed  Google Scholar 

  • Radeff-Huang J, Seasholtz TM, Matteo RG, Brown JH . (2004). G protein mediated signaling pathways in lysophospholipid induced cell proliferation and survival. J Cell Biochem 92: 949–966.

    Article  CAS  PubMed  Google Scholar 

  • Radu CG, Yang LV, Riedinger M, Au M, Witte ON . (2004). T cell chemotaxis to lysophosphatidylcholine through the G2A receptor. Proc Natl Acad Sci USA 101: 245–250.

    Article  CAS  PubMed  Google Scholar 

  • Ramjaun AR, Tomlinson S, Eddaoudi A, Downward J . (2007). Upregulation of two BH3-only proteins, Bmf and Bim, during TGF beta-induced apoptosis. Oncogene 26: 970–981.

    Article  CAS  PubMed  Google Scholar 

  • Rikitake Y, Hirata K, Yamashita T, Iwai K, Kobayashi S, Itoh H et al. (2002). Expression of G2A, a receptor for lysophosphatidylcholine, by macrophages in murine, rabbit, and human atherosclerotic plaques. Arterioscler Thromb Vasc Biol 22: 2049–2053.

    Article  CAS  PubMed  Google Scholar 

  • Rusovici R, Ghaleb A, Shim H, Yang VW, Yun CC . (2007). Lysophosphatidic acid prevents apoptosis of Caco-2 colon cancer cells via activation of mitogen-activated protein kinase and phosphorylation of Bad. Biochim Biophys Acta 1770: 1194–1203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakashita F, Osada S, Takemura M, Imai H, Tomita H, Nonaka K et al. (2007). The effect of p53 gene expression on the inhibition of cell proliferation by paclitaxel. Cancer Chemother Pharmacol 62: 379–385.

    Article  PubMed  Google Scholar 

  • Saunders DE, Lawrence WD, Christensen C, Wappler NL,, Ruan H, Deppe G . (1997). Paclitaxel-induced apoptosis in MCF-7 breast-cancer cells. Int J Cancer 70: 214–220.

    Article  CAS  PubMed  Google Scholar 

  • Sietsma H, Dijkhuis AJ, Kamps W, Kok JW . (2002). Sphingolipids in neuroblastoma: their role in drug resistance mechanisms. Neurochem Res 27: 665–674.

    Article  CAS  PubMed  Google Scholar 

  • Snyder JP, Nettles JH, Cornett B, Downing KH, Nogales E . (2001). The binding conformation of Taxol in beta-tubulin: a model based on electron crystallographic density. Proc Natl Acad Sci USA 98: 5312–5316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • So J, Wang FQ, Navari J, Schreher J, Fishman DA . (2005). LPA-induced epithelial ovarian cancer (EOC) in vitro invasion and migration are mediated by VEGF receptor-2 (VEGF- R2). Gynecol Oncol 97: 870–878.

    Article  CAS  PubMed  Google Scholar 

  • Spankuch B, Kurunci-Csacsko E, Kaufmann M, Strebhardt K . (2007). Rational combinations of siRNAs targeting Plk1 with breast cancer drugs. Oncogene 26: 5793–5807.

    Article  CAS  PubMed  Google Scholar 

  • Stracke ML, Krutzsch HC, Unsworth EJ, Arestad A, Cioce V, Schiffmann E et al. (1992). Identification, purification, and partial sequence analysis of autotaxin, a novel motility-stimulating protein. J Biol Chem 267: 2524–2529.

    CAS  PubMed  Google Scholar 

  • Sun B, Nishihira J, Suzuki M, Fukushima N, Ishibashi T, Kondo M et al. (2003). Induction of macrophage migration inhibitory factor by lysophosphatidic acid: relevance to tumor growth and angiogenesis. Int J Mol Med 12: 633–641.

    CAS  PubMed  Google Scholar 

  • Swanton C, Marani M, Pardo O, Warne PH, Kelly G, Sahai E et al. (2007). Regulators of mitotic arrest and ceramide metabolism are determinants of sensitivity to paclitaxel and other chemotherapeutic drugs. Cancer Cell 11: 498–512.

    Article  CAS  PubMed  Google Scholar 

  • Tigyi G, Parrill AL . (2003). Molecular mechanisms of lysophosphatidic acid action. Prog Lipid Res 42: 498–526.

    Article  CAS  PubMed  Google Scholar 

  • Tomura H, Mogi C, Sato K, Okajima F . (2005). Proton-sensing and lysolipid-sensitive G- protein-coupled receptors: a novel type of multi-functional receptors. Cell Signal 17: 1466–1476.

    Article  CAS  PubMed  Google Scholar 

  • Umezu-Goto M, Kishi Y, Taira A, Hama K, Dohmae N, Takio K et al. (2002). Autotaxin has lysophospholipase D activity leading to tumor cell growth and motility by lysophosphatidic acid production. J Cell Biol 158: 227–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiner JA, Chun J . (1999). Schwann cell survival mediated by the signaling phospholipid lysophosphatidic acid. Proc Natl Acad Sci USA 96: 5233–5238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Shen Z, Wiper DW, Wu M, Morton RE, Elson P et al. (1998). Lysophosphatidic acid as a potential biomarker for ovarian and other gynecologic cancers. Jama 280: 719–723.

    Article  CAS  PubMed  Google Scholar 

  • Yang SY, Lee J, Park CG, Kim S, Hong S, Chung HC et al. (2002). Expression of autotaxin (NPP-2) is closely linked to invasiveness of breast cancer cells. Clin Exp Metastasis 19: 603–608.

    Article  CAS  PubMed  Google Scholar 

  • Ye X, Ishii I, Kingsbury MA, Chun J . (2002). Lysophosphatidic acid as a novel cell survival/apoptotic factor. Biochim Biophys Acta 1585: 108–113.

    Article  CAS  PubMed  Google Scholar 

  • Yue J, Yokoyama K, Balazs L, Baker DL, Smalley D, Pilquil C et al. (2004). Mice with transgenic overexpression of lipid phosphate phosphatase-1 display multiple organotypic deficits without alteration in circulating lysophosphatidate level. Cell Signal 16: 385–399.

    Article  CAS  PubMed  Google Scholar 

  • Zhu K, Baudhuin LM, Hong G, Williams FS, Cristina KL, Kabarowski JH et al. (2001). Sphingosylphosphorylcholine and lysophosphatidylcholine are ligands for the G protein- coupled receptor GPR4. J Biol Chem 276: 41325–41335.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Mr M Czernick and Mr J Dewald for excellent technical support in the fluorescence-activated cell sorting analysis and preparing labeled LPA, respectively. We thank Dr M Sawyer for help with the isobologram analysis, Dr E Posse de Chaves for advice on DAPI staining and Drs F Bamforth and GS Cembrowski for their support. We thank Dr T Clair for providing recombinant ATX and the ATX antibody. Drs KR Lynch and TL Macdonald donated the VPC8a202 and VPC51299 and Dr JA Boutin gave us S32826. DNB is a Medical Scientist of the Alberta Heritage Foundation for Medical Research. ISG is a recipient of a Recruitment Award from the Alberta Cancer Board/Alberta Cancer Foundation. NS is a recipient of scholarships from Iranian Ministry of Health and the Bell McLeod Educational Fund, University of Alberta. The work was supported by the Canadian Institutes of Health Research (MOP 81137).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D N Brindley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samadi, N., Gaetano, C., Goping, I. et al. Autotaxin protects MCF-7 breast cancer and MDA-MB-435 melanoma cells against Taxol-induced apoptosis. Oncogene 28, 1028–1039 (2009). https://doi.org/10.1038/onc.2008.442

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.442

Keywords

This article is cited by

Search

Quick links