Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Inhibition of pituitary tumors in Rb mutant chimeras through E2f4 loss reveals a key suppressive role for the pRB/E2F pathway in urothelium and ganglionic carcinogenesis

Abstract

The retinoblastoma protein pRB suppresses tumorigenesis largely through regulation of the E2F transcription factors. E2F4, the most abundant E2F protein, is thought to act in cooperation with pRB to restrain cell proliferation. In this study, we analyse how loss of E2f4 affects the tumorigenicity of pRB-deficient tissues. As Rb−/−;E2f4−/− germline mice die in utero, we generated Rb−/−;E2f4−/− chimeric animals to allow examination of adult tumor phenotypes. We found that loss of E2f4 had a differential effect on known Rb-associated neuroendocrine tumors. It did not affect thyroid and adrenal glands tumors but partially suppressed lung neuroendocrine hyperplasia. The most striking effect was in the pituitary where E2F4 loss delayed the development, and reduced the incidence, of Rb mutant tumors. This tumor suppression increased the longevity of the Rb−/−;E2f4−/− chimeric animals allowing us to identify novel tumor types. We observed ganglionic neuroendocrine neoplasms, lesions not associated earlier with mutation of either Rb or E2f4. Moreover, a subset of the Rb−/−;E2f4−/− chimeras developed either low- or high-grade carcinomas in the urothelium transitional epithelium supporting a key role for Rb in bladder cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Clarke AR, Maandag ER, van Roon M, van der Lugt NM, van der Valk M, Hooper ML et al. (1992). Requirement for a functional Rb-1 gene in murine development. Nature 359: 328–330.

    Article  CAS  PubMed  Google Scholar 

  • Dannenberg JH, van Rossum A, Schuijff L, Te Riele H . (2000). Ablation of the retinoblastoma gene family deregulates G(1) control causing immortalization and increased cell turnover under growth-restricting conditions. Genes Dev 14: 3051–3064.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • DeGregori J, Leone G, Miron A, Jakoi L, Nevins JR . (1997). Distinct roles for E2F proteins in cell growth control and apoptosis. Proc Natl Acad Sci USA 94: 7245–7250.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dinney CP, McConkey DJ, Millikan RE, Wu X, Bar-Eli M, Adam L et al. (2004). Focus on bladder cancer. Cancer Cell 6: 111–116.

    Article  CAS  PubMed  Google Scholar 

  • Du W, Pogoriler J . (2006). Retinoblastoma family genes. Oncogene 25: 5190–5200.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dyson N . (1998). The regulation of E2F by pRB-family proteins. Genes Dev 12: 2245–2262.

    Article  CAS  PubMed  Google Scholar 

  • Friedrich G, Soriano P . (1991). Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev 5: 1513–1523.

    Article  CAS  PubMed  Google Scholar 

  • Gaubatz S, Lees JA, Lindeman GJ, Livingston DM . (2001). E2F4 is exported from the nucleus in a CRM1-dependent manner. Mol Cell Biol 21: 1384–1392.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gaubatz S, Lindeman GJ, Ishida S, Jakoi L, Nevins JR, Livingston DM et al. (2000). E2F4 and E2F5 play an essential role in pocket protein-mediated G1 control. Mol Cell 6: 729–735.

    Article  CAS  PubMed  Google Scholar 

  • Harbour JW, Dean DC . (2000). The Rb/E2F pathway: expanding roles and emerging paradigms. Genes Dev 14: 2393–2409.

    Article  CAS  PubMed  Google Scholar 

  • Huber K . (2006). The sympathoadrenal cell lineage: specification, diversification, and new perspectives. Dev Biol 298: 335–343.

    Article  CAS  PubMed  Google Scholar 

  • Humbert PO, Rogers C, Ganiatsas S, Landsberg RL, Trimarchi JM, Dandapani S et al. (2000a). E2F4 is essential for normal erythrocyte maturation and neonatal viability. Mol Cell 6: 281–291.

    Article  CAS  PubMed  Google Scholar 

  • Humbert PO, Verona R, Trimarchi JM, Rogers C, Dandapani S, Lees JA . (2000b). E2f3 is critical for normal cellular proliferation. Genes Dev 14: 690–703.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jacks T, Fazeli A, Schmitt EM, Bronson RT, Goodell MA, Weinberg RA . (1992). Effects of an Rb mutation in the mouse. Nature 359: 295–300.

    Article  CAS  PubMed  Google Scholar 

  • Lee EY, Cam H, Ziebold U, Rayman JB, Lees JA, Dynlacht BD . (2002). E2F4 loss suppresses tumorigenesis in Rb mutant mice. Cancer Cell 2: 463–472.

    Article  CAS  PubMed  Google Scholar 

  • Meuwissen R, Linn SC, Linnoila RI, Zevenhoven J, Mooi WJ, Berns A . (2003). Induction of small cell lung cancer by somatic inactivation of both Trp53 and Rb1 in a conditional mouse model. Cancer Cell 4: 181–189.

    Article  CAS  PubMed  Google Scholar 

  • Moberg K, Starz MA, Lees JA . (1996). E2F-4 switches from p130 to p107 and pRB in response to cell cycle reentry. Mol Cell Biol 16: 1436–1449.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Parisi T, Yuan TL, Faust AM, Caron AM, Bronson R, Lees JA . (2007). Selective requirements for E2f3 in the development and tumorigenicity of Rb-deficient chimeric tissues. Mol Cell Biol 27: 2283–2293.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rayman JB, Takahashi Y, Indjeian VB, Dannenberg JH, Catchpole S, Watson RJ et al. (2002). E2F mediates cell cycle-dependent transcriptional repression in vivo by recruitment of an HDAC1/mSin3B corepressor complex. Genes Dev 16: 933–947.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rempel RE, Saenz-Robles MT, Storms R, Morham S, Ishida S, Engel A et al. (2000). Loss of E2F4 activity leads to abnormal development of multiple cellular lineages. Mol Cell 6: 293–306.

    Article  CAS  PubMed  Google Scholar 

  • Ren B, Cam H, Takahashi Y, Volkert T, Terragni J, Young RA et al. (2002). E2F integrates cell cycle progression with DNA repair, replication, and G(2)/M checkpoints. Genes Dev 16: 245–256.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sage J, Mulligan GJ, Attardi LD, Miller A, Chen S, Williams B et al. (2000). Targeted disruption of the three Rb-related genes leads to loss of G(1) control and immortalization. Genes Dev 14: 3037–3050.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schulz WA . (2006). Understanding urothelial carcinoma through cancer pathways. Int J Cancer 119: 1513–1518.

    Article  CAS  PubMed  Google Scholar 

  • Trimarchi JM, Lees JA . (2002). Sibling rivalry in the E2F family. Nat Rev Mol Cell Biol 3: 11–20.

    Article  CAS  PubMed  Google Scholar 

  • Verona R, Moberg K, Estes S, Starz M, Vernon JP, Lees JA . (1997). E2F activity is regulated by cell cycle-dependent changes in subcellular localization. Mol Cell Biol 17: 7268–7282.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weinberg RA . (1995). The retinoblastoma protein and cell cycle control. Cell 81: 323–330.

    Article  CAS  PubMed  Google Scholar 

  • Wikenheiser-Brokamp KA . (2006). Retinoblastoma family proteins: insights gained through genetic manipulation of mice. Cell Mol Life Sci 63: 767–780.

    Article  CAS  PubMed  Google Scholar 

  • Williams BO, Schmitt EM, Remington L, Bronson RT, Albert DM, Weinberg RA et al. (1994). Extensive contribution of Rb-deficient cells to adult chimeric mice with limited histopathological consequences. Embo J 13: 4251–4259.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu L, Timmers C, Maiti B, Saavedra HI, Sang L, Chong GT et al. (2001). The E2F1-3 transcription factors are essential for cellular proliferation. Nature 414: 457–462.

    Article  CAS  PubMed  Google Scholar 

  • Wu XR . (2005). Urothelial tumorigenesis: a tale of divergent pathways. Nat Rev Cancer 5: 713–725.

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZT, Pak J, Shapiro E, Sun TT, Wu XR . (1999). Urothelium-specific expression of an oncogene in transgenic mice induced the formation of carcinoma in situ and invasive transitional cell carcinoma. Cancer Res 59: 3512–3517.

    CAS  PubMed  Google Scholar 

  • Ziebold U, Lee EY, Bronson RT, Lees JA . (2003). E2F3 loss has opposing effects on different pRB-deficient tumors, resulting in suppression of pituitary tumors but metastasis of medullary thyroid carcinomas. Mol Cell Biol 23: 6542–6552.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the CCR Transgenic Facility, in particular to John M Mkandawire and Peimin Qu, for technical help, and to Alicia Caron in the Histology Facility. We are also thankful to SR Frank and P White for critical reading of the paper and helpful discussion. This project was supported by NIH grants to JAL (CA121921). JAL is a Ludwig Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J A Lees.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parisi, T., Bronson, R. & Lees, J. Inhibition of pituitary tumors in Rb mutant chimeras through E2f4 loss reveals a key suppressive role for the pRB/E2F pathway in urothelium and ganglionic carcinogenesis. Oncogene 28, 500–508 (2009). https://doi.org/10.1038/onc.2008.406

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.406

Keywords

This article is cited by

Search

Quick links