Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Suppression of neuroblastoma growth by dipeptidyl peptidase IV: relevance of chemokine regulation and caspase activation

Abstract

Imbalanced protease expression and activities may contribute to the development of cancers, including neuroblastoma (NB). NB is a fatal childhood cancer of the sympathetic nervous system that frequently overexpresses mitogenic peptides, chemokines and their receptors. Dipeptidyl peptidase IV (DPPIV), a cell surface serine protease, inactivates or degrades some of these bioactive peptides and chemokines, thereby regulating cell proliferation and survival. Our studies show that DPPIV is expressed in normal neural crest-derived structures, including superior cervical and dorsal root ganglion cells, sciatic nerve, and in adrenal glands, but its expression is greatly decreased or lost in cells derived from NB, their malignant counterpart. Restoration of DPPIV expression in NB cells led to their differentiation in association with increased expression of the neural marker MAP2 and decreased expression of chemokines, including stromal-derived factor 1 (SDF1) and its receptor CXCR4. Furthermore, DPPIV promoted apoptosis, and inhibited SDF1-mediated in vitro cell migration and angiogenic potential. These changes were accompanied by caspase activation and decreased levels of phospho-Akt and MMP9 activity, which are downstream effectors of SDF1-CXCR4 signaling. Importantly, DPPIV suppressed the tumorigenic potential of NB cells in a xenotransplantation mouse model. These data support a potential role for DPPIV in inhibiting NB growth and progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Abbott CA, Gorrell MD, Levy MT, McCaughan GW . (1997). Molecular analyses of human and rat dipeptidyl peptidase IV. Adv Exp Med Biol 421: 161–169.

    Article  CAS  Google Scholar 

  • Airoldi I, Cocco C, Morandi F, Prigione I, Pistoia V . (2008). CXCR5 may be involved in the attraction of human metastatic neuroblastoma cells to the bone marrow. Cancer Immunol Immunother 57: 541–548.

    Article  CAS  Google Scholar 

  • Airoldi I, Raffaghello L, Piovan E, Cocco C, Carlini B, Amadori A et al. (2006). CXCL12 does not attract CXCR4+ human metastatic neuroblastoma cells: clinical implications. Clin Cancer Res 12: 77–82.

    Article  CAS  Google Scholar 

  • Balkwill F . (2004). Cancer and the chemokine network. Nat Rev Cancer 4: 540–550.

    Article  CAS  Google Scholar 

  • Barbero S, Bonavia R, Bajetto A, Porcile C, Pirani P, Ravetti JL et al. (2003). Stromal cell-derived factor 1alpha stimulates human glioblastoma cell growth through the activation of both extracellular signal-regulated kinases 1/2 and Akt. Cancer Res 63: 1969–1974.

    CAS  Google Scholar 

  • Bauvois B . (2004). Transmembrane proteases in cell growth and invasion: new contributors to angiogenesis? Oncogene 23: 317–329.

    Article  CAS  Google Scholar 

  • Belmadani A, Tran PB, Ren D, Assimacopoulos S, Grove EA, Miller RJ . (2005). The chemokine stromal cell-derived factor-1 regulates the migration of sensory neuron progenitors. J Neurosci 25: 3995–4003.

    Article  CAS  PubMed Central  Google Scholar 

  • Bogenrieder T, Finstad CL, Freeman RH, Papandreou CN, Scher HI, Albino AP et al. (1997). Expression and localization of aminopeptidase A, aminopeptidase N, and dipeptidyl peptidase IV in benign and malignant human prostate tissue. Prostate 33: 225–232.

    Article  CAS  Google Scholar 

  • Bonfil RD, Chinni S, Fridman R, Kim HR, Cher ML . (2007). Proteases, growth factors, chemokines, and the microenvironment in prostate cancer bone metastasis. Urol Oncol 25: 407–411.

    Article  CAS  Google Scholar 

  • Brodeur GM . (2003). Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer 3: 203–216.

    Article  CAS  Google Scholar 

  • Burger JA, Kipps TJ . (2006). CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood 107: 1761–1767.

    Article  CAS  PubMed Central  Google Scholar 

  • Carl-McGrath S, Lendeckel U, Ebert M, Rocken C . (2006). Ectopeptidases in tumour biology: a review. Histol Histopathol 21: 1339–1353.

    CAS  PubMed  Google Scholar 

  • Castel V, Grau E, Noguera R, Martinez F . (2007). Molecular biology of neuroblastoma. Clin Transl Oncol 9: 478–483.

    Article  CAS  Google Scholar 

  • Chinni SR, Sivalogan S, Dong Z, Filho JC, Deng X, Bonfil RD et al. (2006). CXCL12/CXCR4 signaling activates Akt-1 and MMP-9 expression in prostate cancer cells: the role of bone microenvironment-associated CXCL12. Prostate 66: 32–48.

    Article  CAS  Google Scholar 

  • Christopherson II KW, Hangoc G, Broxmeyer HE . (2002). Cell surface peptidase CD26/dipeptidylpeptidase IV regulates CXCL12/stromal cell-derived factor-1 alpha-mediated chemotaxis of human cord blood CD34+ progenitor cells. J Immunol 169: 7000–7008.

    Article  CAS  Google Scholar 

  • Dai J, Shen R, Sumitomo M, Goldberg JS, Geng Y, Navarro D et al. (2001). Tumor-suppressive effects of neutral endopeptidase in androgen-independent prostate cancer cells. Clin Cancer Res 7: 1370–1377.

    CAS  PubMed  Google Scholar 

  • Dinjens WN, Ten Kate J, Kirch JA, Tanke HJ, Van der Linden EP, Van den Ingh HF et al. (1990). Adenosine deaminase complexing protein (ADCP) expression and metastatic potential in prostatic adenocarcinomas. J Pathol 160: 195–201.

    Article  CAS  Google Scholar 

  • Dobers J, Grams S, Reutter W, Fan H . (2000). Roles of cysteines in rat dipeptidyl peptidase IV/CD26 in processing and proteolytic activity. Eur J Biochem 267: 5093–5100.

    Article  CAS  Google Scholar 

  • Durinx C, Lambeir AM, Bosmans E, Falmagne JB, Berghmans R, Haemers A et al. (2000). Molecular characterization of dipeptidyl peptidase activity in serum: soluble CD26/dipeptidyl peptidase IV is responsible for the release of X-Pro dipeptides. Eur J Biochem 267: 5608–5613.

    Article  CAS  Google Scholar 

  • Eggert A, Ikegaki N, Kwiatkowski J, Zhao H, Brodeur GM, Himelstein BP . (2000). High-level expression of angiogenic factors is associated with advanced tumor stage in human neuroblastomas. Clin Cancer Res 6: 1900–1908.

    CAS  PubMed  Google Scholar 

  • Fernandis AZ, Prasad A, Band H, Klosel R, Ganju RK . (2004). Regulation of CXCR4-mediated chemotaxis and chemoinvasion of breast cancer cells. Oncogene 23: 157–167.

    Article  CAS  Google Scholar 

  • Gabrilovac J, Abramić M, Uzarević B, Andreis A, Poljak L . (2003). Dipeptidyl peptidase IV (DPPIV) enzyme activity on immature T-cell line R1.1 is down-regulated by dynorphin-A (1-17) as a non-substrate inhibitor. Life Sci 73: 151–166.

    Article  CAS  Google Scholar 

  • Geminder H, Sagi-Assif O, Goldberg L, Meshel T, Rechavi G, Witz IP et al. (2001). A possible role for CXCR4 and its ligand, the CXC chemokine stromal cell-derived factor-1, in the development of bone marrow metastases in neuroblastoma. J Immunol 167: 4747–4757.

    Article  CAS  Google Scholar 

  • Gerard C, Rollins BJ . (2001). Chemokines and disease. Nat Immunol 2: 108–115.

    Article  CAS  Google Scholar 

  • Ghersi G, Dong H, Goldstein LA, Yeh Y, Hakkinen L, Larjava HS et al. (2002). Regulation of fibroblast migration on collagenous matrix by a cell surface peptidase complex. J Biol Chem 277: 29231–29241.

    Article  CAS  Google Scholar 

  • Golubkov VS, Strongin AY . (2007). Proteolysis-driven oncogenesis. Cell Cycle 6: 147–150.

    Article  CAS  Google Scholar 

  • Guyon A, Nahon JL . (2007). Multiple actions of the chemokine stromal cell-derived factor-1alpha on neuronal activity. J Mol Endocrinol 38: 365–376.

    Article  CAS  Google Scholar 

  • Havre PA, Abe M, Urasaki Y, Ohnuma K, Morimoto C, Dang NH . (2008). The role of CD26/dipeptidyl peptidase IV in cancer. Front Biosci 13: 1634–1645.

    Article  CAS  Google Scholar 

  • Kajiyama H, Shibata K, Terauchi M, Ino K, Nawa A, Kikkawa F . (2006). Involvement of DPPIV/CD26 in epithelial morphology and suppressed invasive ability in ovarian carcinoma cells. Ann NY Acad Sci 1086: 233–240.

    Article  CAS  Google Scholar 

  • Kenny AJ, O'Hare MJ, Gusterson BA . (1989). Cell-surface peptidases as modulators of growth and differentiation. Lancet 2: 785–787.

    Article  CAS  Google Scholar 

  • Lambeir AM, Proost P, Durinx C, Bal G, Senten K, Augustyns K et al. (2001). Kinetic investigation of chemokine truncation by CD26/dipeptidyl peptidase IV reveals a striking selectivity within the chemokine family. J Biol Chem 276: 29839–29845.

    Article  CAS  Google Scholar 

  • Li Z, Thiele CJ . (2007). Targeting Akt to increase the sensitivity of neuroblastoma to chemotherapy: lessons learned from the brain-derived neurotrophic factor/TrkB signal transduction pathway. Expert Opin Ther Targets 11: 1611–1621.

    Article  CAS  Google Scholar 

  • Maris JM, Hogarty MD, Bagatell R, Cohn SL . (2007). Neuroblastoma. Lancet 369: 2106–2120.

    Article  CAS  Google Scholar 

  • Maris JM, Woods WG . (2008). Screening for neuroblastoma: a resurrected idea? Lancet 371: 1142–1143.

    Article  Google Scholar 

  • Matthay KK . (2008). Chemotherapy for neuroblastoma: does it hit the target? Lancet Oncol 9: 195–196.

    Article  Google Scholar 

  • Meitar D, Crawford SE, Rademaker AW, Cohn SL . (1996). Tumor angiogenesis correlates with metastatic disease, N-myc amplification, and poor outcome in human neuroblastoma. J Clin Oncol 14: 405–414.

    Article  CAS  Google Scholar 

  • Mentlein R . (1999). Dipeptidyl-peptidase IV (CD26)—role in the inactivation of regulatory peptides. Regul Pept 85: 9–24.

    Article  CAS  Google Scholar 

  • Morrison ME, Vijayasaradhi S, Engelstein D, Albino AP, Houghton AN . (1993). A marker for neoplastic progression of human melanocytes is a cell surface ectopeptidase. J Exp Med 177: 1135–1143.

    Article  CAS  Google Scholar 

  • Nakagawara A . (2004). Neural crest development and neuroblastoma: the genetic and biological link. Prog Brain Res 146: 233–242.

    CAS  PubMed  Google Scholar 

  • Nakagawara A, Azar CG, Scavarda NJ, Brodeur GM . (1994). Expression and function of TRK-B and BDNF in human neuroblastomas. Mol Cell Biol 14: 759–767.

    Article  CAS  PubMed Central  Google Scholar 

  • Nanus DM . (2003). Of peptides and peptidases: the role of cell surface peptidases in cancer. Clin Cancer Res 9: 6307–6309.

    CAS  PubMed  Google Scholar 

  • Nevo I, Sagi-Assif O, Meshel T, Geminder H, Goldberg-Bittman L, Ben-Menachem S et al. (2004). The tumor microenvironment: CXCR4 is associated with distinct protein expression patterns in neuroblastoma cells. Immunol Lett 92: 163–169.

    Article  CAS  Google Scholar 

  • Payne AS, Cornelius LA . (2002). The role of chemokines in melanoma tumor growth and metastasis. J Invest Dermatol 118: 915–922.

    Article  CAS  Google Scholar 

  • Pethiyagoda CL, Welch DR, Fleming TP . (2000). Dipeptidyl peptidase IV (DPPIV) inhibits cellular invasion of melanoma cells. Clin Exp Metastasis 18: 391–400.

    Article  CAS  Google Scholar 

  • Piazza GA, Callanan HM, Mowery J, Hixson DC . (1989). Evidence for a role of dipeptidyl peptidase IV in fibronectin-mediated interactions of hepatocytes with extracellular matrix. Biochem J 262: 327–334.

    Article  CAS  PubMed Central  Google Scholar 

  • Proost P, Struyf S, Schols D, Durinx C, Wuyts A, Lenaerts JP et al. (1998). Processing by CD26/dipeptidyl-peptidase IV reduces the chemotactic and anti-HIV-1 activity of stromal-cell-derived factor-1alpha. FEBS Lett 432: 73–76.

    Article  CAS  Google Scholar 

  • Raman D, Baugher PJ, Thu YM, Richmond A . (2007). Role of chemokines in tumor growth. Cancer Lett 256: 137–165.

    Article  CAS  PubMed Central  Google Scholar 

  • Ren Y, Chan HM, Fan J, Xie Y, Chen YX, Li W et al. (2006). Inhibition of tumor growth and metastasis in vitro and in vivo by targeting macrophage migration inhibitory factor in human neuroblastoma. Oncogene 25: 3501–3508.

    Article  CAS  Google Scholar 

  • Rundhaug JE . (2005). Matrix metalloproteinases and angiogenesis. J Cell Mol Med 9: 267–285.

    Article  CAS  Google Scholar 

  • Russell HV, Hicks J, Okcu MF, Nuchtern JG . (2004). CXCR4 expression in neuroblastoma primary tumors is associated with clinical presentation of bone and bone marrow metastases. J Pediatr Surg 39: 1506–1511.

    Article  Google Scholar 

  • Sakamoto J, Watanabe T, Teramukai S, Akiyama S, Morimoto T, Takagi H et al. (1993). Distribution of adenosine deaminase binding protein in normal and malignant tissues of the gastrointestinal tract studied by monoclonal antibodies. J Surg Oncol 52: 124–134.

    Article  CAS  Google Scholar 

  • Scala S, Giuliano P, Ascierto PA, Ierano C, Franco R, Napolitano M et al. (2006). Human melanoma metastases express functional CXCR4. Clin Cancer Res 12: 2427–2433.

    Article  CAS  Google Scholar 

  • Scharpe S, De Meester I . (2001). Peptide truncation by dipeptidyl peptidase IV: a new pathway for drug discovery? Verh K Acad Geneeskd Belg 63: 5–32; discussion 32–33.

    CAS  PubMed  Google Scholar 

  • Schrader WP, West CA, Strominger NL . (1987). Localization of adenosine deaminase and adenosine deaminase complexing protein in rabbit brain. J Histochem Cytochem 35: 443–451.

    Article  CAS  Google Scholar 

  • Sedo A, Kraml J . (1994). Dipeptidyl peptidase IV in cell proliferation and differentiation. Sb Lek 95: 285–288.

    CAS  PubMed  Google Scholar 

  • Shioda T, Kato H, Ohnishi Y, Tashiro K, Ikegawa M, Nakayama EE et al. (1998). Anti-HIV-1 and chemotactic activities of human stromal cell-derived factor 1alpha (SDF-1alpha) and SDF-1beta are abolished by CD26/dipeptidyl peptidase IV-mediated cleavage. Proc Natl Acad Sci USA 95: 6331–6336.

    Article  CAS  Google Scholar 

  • Singh S, Sadanandam A, Singh RK . (2007). Chemokines in tumor angiogenesis and metastasis. Cancer Metastasis Rev 26: 453–467.

    Article  CAS  PubMed Central  Google Scholar 

  • Tanaka T, Bai Z, Srinoulprasert Y, Yang BG, Hayasaka H, Miyasaka M . (2005). Chemokines in tumor progression and metastasis. Cancer Sci 96: 317–322.

    Article  CAS  Google Scholar 

  • Terauchi M, Kajiyama H, Shibata K, Ino K, Mizutani S, Kikkawa F . (2005). Anti-progressive effect of neutral endopeptidase 24.11 (NEP/CD10) on cervical carcinoma in vitro and in vivo. Oncology 69: 52–62.

    Article  CAS  Google Scholar 

  • Tran PB, Ren D, Veldhouse TJ, Miller RJ . (2004). Chemokine receptors are expressed widely by embryonic and adult neural progenitor cells. J Neurosci Res 76: 20–34.

    Article  CAS  Google Scholar 

  • Tsuji T, Sugahara K, Tsuruda K, Uemura A, Harasawa H, Hasegawa H et al. (2004). Clinical and oncologic implications in epigenetic down-regulation of CD26/dipeptidyl peptidase IV in adult T-cell leukemia cells. Int J Hematol 80: 254–260.

    Article  CAS  Google Scholar 

  • Tucker RP . (2004). Neural crest cells: a model for invasive behavior. Int J Biochem Cell Biol 36: 173–177.

    Article  CAS  Google Scholar 

  • Vasudevan SA, Nuchtern JG, Shohet JM . (2005). Gene profiling of high risk neuroblastoma. World J Surg 29: 317–324.

    Article  Google Scholar 

  • Wesley UV, Albino AP, Tiwari S, Houghton AN . (1999). A role for dipeptidyl peptidase IV in suppressing the malignant phenotype of melanocytic cells. J Exp Med 190: 311–322.

    Article  CAS  PubMed Central  Google Scholar 

  • Wesley UV, McGroarty M, Homoyouni A . (2005). Dipeptidyl peptidase inhibits malignant phenotype of prostate cancer cells by blocking basic fibroblast growth factor signaling pathway. Cancer Res 65: 1325–1334.

    Article  CAS  Google Scholar 

  • Wesley UV, Tiwari S, Houghton AN . (2004). Role for dipeptidyl peptidase IV in tumor suppression of human non small cell lung carcinoma cells. Int J Cancer 109: 855–866.

    Article  CAS  Google Scholar 

  • Zigrino P, Loffek S, Mauch C . (2005). Tumor–stroma interactions: their role in the control of tumor cell invasion. Biochimie 87: 321–328.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Grant, Neuroscience COBRE 2 P20 RR016435-P4Y6 from the National Center for Research Resources-National Institute of Health (NCRR). We thank the Department of Microbiology and Molecular Genetics and the Vermont Cancer Center (VCC) for their support. We thank Drs Cynthia Forehand, Diane Jaworski, Rodney Parsons, Marcus Bosenberg, Rae Nishi and Cedric Wesley for helpful discussions and critical review of the paper. We thank the staff at the VCC and COBRE-Neuroscience core facilities for their technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U V Wesley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arscott, W., LaBauve, A., May, V. et al. Suppression of neuroblastoma growth by dipeptidyl peptidase IV: relevance of chemokine regulation and caspase activation. Oncogene 28, 479–491 (2009). https://doi.org/10.1038/onc.2008.402

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.402

Keywords

This article is cited by

Search

Quick links