Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The adenovirus E4orf4 protein induces growth arrest and mitotic catastrophe in H1299 human lung carcinoma cells

Abstract

The human adenovirus E4orf4 protein, when expressed alone, induces p53-independent death in a wide range of cancer cells. Earlier studies by our groups suggested that although in some cases cell death can be associated with some hallmarks of apoptosis, it is not always affected by caspase inhibitors. Thus it is unlikely that E4orf4-induced cell death occurs uniquely through apoptosis. In the present studies using H1299 human lung carcinoma cells as a model system we found that death is induced in the absence of activation of any of the caspases tested, accumulation of reactive oxygen species, or release of cytochrome c from mitochondria. E4orf4 caused a substantial change in cell morphology, including vigorous membrane blebbing, multiple nuclei in many cells and increased cell volume. Most of these characteristics are not typical of apoptosis, but they are of necrosis. FACS analysis and western blotting for cell cycle markers showed that E4orf4-expressing cells became arrested in G2/M and also accumulated high levels of cyclin E. The presence of significant numbers of tetraploid and polyploid cells and some cells with micronuclei suggested that E4orf4 appears to induce death in these cells through a process resulting from mitotic catastrophe.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Bacchetti S, Graham FL . (1993). Inhibition of cell proliferation by an adenovirus vector expressing the human wild type p53 protein. International Journal of Oncology 78: 781–788.

    Google Scholar 

  • Bartek J, Lukas J . (2007). DNA damage checkpoints: from initiation to recovery or adaptation. Curr Opin Cell Biol 19: 238–245.

    Article  CAS  PubMed  Google Scholar 

  • Blagosklonny MV . (2007). Mitotic arrest and cell fate: why and how mitotic inhibition of transcription drives mutually exclusive events. Cell Cycle 6: 70–74.

    Article  CAS  PubMed  Google Scholar 

  • Blagosklonny MV, Pardee AB . (2002). The restriction point of the cell cycle. Cell Cycle 1: 103–110.

    CAS  PubMed  Google Scholar 

  • Castedo M, Perfettini JL, Roumier T, Andreau K, Medema R, Kroemer G . (2004). Cell death by mitotic catastrophe: a molecular definition. Oncogene 23: 2825–2837.

    Article  CAS  PubMed  Google Scholar 

  • Cossarizza A, Baccarani-Contri M, Kalashnikova G, Franceschi C . (1993). A new method for the cytofluorimetric analysis of mitochondrial membrane potential using the J-aggregate forming lipophilic cation 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolcarbocyanine iodide (JC-1). Biochem Biophys Res Commun 197: 40–45.

    Article  CAS  PubMed  Google Scholar 

  • Debnath J, Baehrecke EH, Kroemer G . (2005). Does autophagy contribute to cell death? Autophagy 1: 66–74.

    Article  CAS  PubMed  Google Scholar 

  • Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C et al. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92: 9363–9367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elmore S . (2007). Apoptosis: a review of programmed cell death. Toxicol Pathol 35: 495–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fadok VA, Bratton DL, Frasch SC, Warner ML, Henson PM . (1998). The role of phosphatidylserine in recognition of apoptotic cells by phagocytes. Cell Death Differ 5: 551–562.

    Article  CAS  PubMed  Google Scholar 

  • Fleury C, Mignotte B, Vayssiere JL . (2002). Mitochondrial reactive oxygen species in cell death signaling. Biochimie 84: 131–141.

    Article  CAS  PubMed  Google Scholar 

  • Jaattela M . (2002). Programmed cell death: many ways for cells to die decently. Ann Med 34: 480–488.

    Article  PubMed  Google Scholar 

  • Keck JM, Summers MK, Tedesco D, Ekholm-Reed S, Chuang LC, Jackson PK et al. (2007). Cyclin E overexpression impairs progression through mitosis by inhibiting APC(Cdh1). J Cell Biol 178: 371–385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelekar A . (2005). Autophagy. Ann N Y Acad Sci 1066: 259–271.

    Article  CAS  PubMed  Google Scholar 

  • Keyomarsi K, Herliczek TW . (1997). The role of cyclin E in cell proliferation, development and cancer. Prog Cell Cycle Res 3: 171–191.

    Article  CAS  PubMed  Google Scholar 

  • Kornitzer D, Sharf R, Kleinberger T . (2001). Adenovirus E4orf4 protein induces PP2A-dependent growth arrest in Saccharomyces cerevisiae and interacts with the anaphase-promoting complex/cyclosome. J Cell Biol 154: 331–344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koutsami MK, Tsantoulis PK, Kouloukoussa M, Apostolopoulou K, Pateras IS, Spartinou Z et al. (2006). Centrosome abnormalities are frequently observed in non-small-cell lung cancer and are associated with aneuploidy and cyclin E overexpression. J Pathol 209: 512–521.

    Article  CAS  PubMed  Google Scholar 

  • Kroemer G . (2003). Mitochondrial control of apoptosis: an introduction. Biochem Biophys Res Commun 304: 433–435.

    Article  CAS  PubMed  Google Scholar 

  • Kroemer G, Reed JC . (2000). Mitochondrial control of cell death. Nat Med 6: 513–519.

    Article  CAS  PubMed  Google Scholar 

  • Lavoie JN, Champagne C, Gingras MC, Robert A . (2000). Adenovirus E4 open reading frame 4-induced apoptosis involves dysregulation of Src family kinases. J Cell Biol 150: 1037–1056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lavoie JN, Nguyen M, Marcellus RC, Branton PE, Shore GC . (1998). E4orf4, a novel adenovirus death factor that induces p53-independent apoptosis by a pathway that is not inhibited by zVAD-fmk. J Cell Biol 140: 637–645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leist M, Jaattela M . (2001). Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2: 589–598.

    Article  CAS  PubMed  Google Scholar 

  • Li PF, Dietz R, von Harsdorf R . (1999). p53 regulates mitochondrial membrane potential through reactive oxygen species and induces cytochrome c-independent apoptosis blocked by Bcl-2. Embo J 18: 6027–6036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livne A, Shtrichman R, Kleinberger T . (2001). Caspase activation by adenovirus e4orf4 protein is cell line specific and Is mediated by the death receptor pathway. J Virol 75: 789–798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lockshin RA, Zakeri Z . (2001). Programmed cell death and apoptosis: origins of the theory. Nat Rev Mol Cell Biol 2: 545–550.

    Article  CAS  PubMed  Google Scholar 

  • Mansilla S, Priebe W, Portugal J . (2006). Mitotic catastrophe results in cell death by caspase-dependent and caspase-independent mechanisms. Cell Cycle 5: 53–60.

    Article  CAS  PubMed  Google Scholar 

  • Marcellus RC, Chan H, Paquette D, Thirlwell S, Boivin D, Branton PE . (2000). Induction of p53-independent apoptosis by the adenovirus E4orf4 protein requires binding to the Balpha subunit of protein phosphatase 2A. J Virol 74: 7869–7877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcellus RC, Lavoie JN, Boivin D, Shore GC, Ketner G, Branton PE . (1998). The early region 4 orf4 protein of human adenovirus type 5 induces p53-independent cell death by apoptosis. J Virol 72: 7144–7153.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mazumder S, DuPree EL, Almasan A . (2004). A dual role of cyclin E in cell proliferation and apoptosis may provide a target for cancer therapy. Curr Cancer Drug Targets 4: 65–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robert A, Miron MJ, Champagne C, Gingras MC, Branton PE, Lavoie JN . (2002). Distinct cell death pathways triggered by the adenovirus early region 4 ORF 4 protein. J Cell Biol 158: 519–528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roopchand DE, Lee JM, Shahinian S, Paquette D, Bussey H, Branton PE . (2001). Toxicity of human adenovirus E4orf4 protein in Saccharomyces cerevisiae results from interactions with the Cdc55 regulatory B subunit of PP2A. Oncogene 20: 5279–5290.

    Article  CAS  PubMed  Google Scholar 

  • Shtrichman R, Kleinberger T . (1998). Adenovirus type 5 E4 open reading frame 4 protein induces apoptosis in transformed cells. J Virol 72: 2975–2982.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shtrichman R, Sharf R, Barr H, Dobner T, Kleinberger T . (1999). Induction of apoptosis by adenovirus E4orf4 protein is specific to transformed cells and requires an interaction with protein phosphatase 2A. Proc Natl Acad Sci USA 96: 10080–10085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strasser A, O'Connor L, Dixit VM . (2000). Apoptosis signaling. Annu Rev Biochem 69: 217–245.

    Article  CAS  PubMed  Google Scholar 

  • Tsujimoto Y, Shimizu S . (2005). Another way to die: autophagic programmed cell death. Cell Death Differ 12 (Suppl 2): 1528–1534.

    Article  CAS  PubMed  Google Scholar 

  • Vojta PJ, Barrett JC . (1995). Genetic analysis of cellular senescence. Biochim Biophys Acta 1242: 29–41.

    PubMed  Google Scholar 

  • Wang X . (2001). The expanding role of mitochondria in apoptosis. Genes Dev 15: 2922–2933.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dennis Takayesu for technical support and Denis Paquette, Helen Chan and Mark Watson from Gemin X Biotechnologies Inc. for making some of the DNA constructs and for help in some experimental protocols. We also thank Eric Massicotte and Nathalie Tessier of Institut des reserches cliniques de Montréal and Ken McDonald at McGill Life Sciences Complex for performing flow cytometry analyses, and Jacynthe Lalibeté from the Department of Pharmacology and Therapeutics at McGill University for confocal microscopy study. Gordon Shore provided anti-caspase and anti-actin antibodies. This work was supported by grants from the Canadian Cancer Society through the National Cancer Institute of Canada (PEB, JNL), the Canadian Institutes of Health Research (PEB, JNL), and from Gemin X Biotechnologies Inc (PEB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P E Branton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, S., Szymborski, A., Miron, MJ. et al. The adenovirus E4orf4 protein induces growth arrest and mitotic catastrophe in H1299 human lung carcinoma cells. Oncogene 28, 390–400 (2009). https://doi.org/10.1038/onc.2008.393

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.393

Keywords

This article is cited by

Search

Quick links