Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The myxoid liposarcoma FUS-DDIT3 fusion oncoprotein deregulates NF-κB target genes by interaction with NFKBIZ

Abstract

FUS (also called TLS), EWSR1 and TAF15 (also called TAF2N) are related genes involved in tumor type-specific fusion oncogenes in human malignancies. The FUS-DDIT3 fusion oncogene results from a t(12;16)(q13;p11) chromosome translocation and has a causative role in the initiation of myxoid/round cell liposarcomas (MLS/RCLS). The FUS-DDIT3 protein induces increased expression of the CAAT/enhancer-binding protein (C/EBP) and nuclear factor-κB (NF-κB)-controlled gene IL8, and the N-terminal FUS part is required for this activation. Chromatin immunoprecipitation analysis showed that FUS-DDIT3 binds the IL8 promoter. Expression studies of the IL8 promoter harboring a C/EBP–NF-κB composite site pinpointed the importance of NF-κB for IL8 expression in FUS-DDIT3-expressing cells. We therefore probed for possible interaction of FUS-DDIT3 with members of the NF-κB family. The nuclear factor NFKBIZ colocalizes with FUS-DDIT3 in nuclear structures, and immunoprecipitation experiments showed that FUS-DDIT3 binds the C-terminal of NFKBIZ. We also report that additional NF-κB-controlled genes are upregulated at the mRNA level in FUS-DDIT3-expressing cell lines and they can be induced by NFKBIZ. Taken together, the results indicate that FUS-DDIT3 deregulates some NF-κB-controlled genes through interactions with NFKBIZ. Similar mechanisms may be a part of the transformation process in other tumor types carrying FUS, EWSR1 and TAF15 containing fusion oncogenes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Åman P, Panagopoulos I, Lassen C, Fioretos T, Mencinger M, Toresson H et al. (1996). Expression patterns of the human sarcoma-associated genes FUS and EWS and the genomic structure of FUS. Genomics 37: 1–8.

    Article  Google Scholar 

  • Åman P, Ron D, Mandahl N, Fioretos T, Heim S, Arheden K et al. (1992). Rearrangement of the transcription factor gene CHOP in myxoid liposarcomas with t(12;16)(q13;p11). Genes Chromosomes Cancer 5: 278–285.

    Article  Google Scholar 

  • Basile A, Sica A, d’Aniello E, Breviario F, Garrido G, Castellano M et al. (1997). Characterization of the promoter for the human long pentraxin PTX3. Role of NF-kappaB in tumor necrosis factor-alpha and interleukin-1beta regulation. J Biol Chem 272: 8172–8178.

    Article  CAS  Google Scholar 

  • Biegel JA, Conard K, Brooks JJ . (1993). Translocation (11;22)(p13;q12): primary change in intra-abdominal desmoplastic small round cell tumor. Genes Chromosomes Cancer 7: 119–121.

    Article  CAS  Google Scholar 

  • Bratt T . (2000). Lipocalins and cancer. Biochim Biophys Acta 1482: 318–326.

    Article  CAS  Google Scholar 

  • Brinckerhoff CE, Rutter JL, Benbow U . (2000). Interstitial collagenases as markers of tumor progression. Clin Cancer Res 6: 4823–4830.

    CAS  PubMed  Google Scholar 

  • Caretti G, Salsi V, Vecchi C, Imbriano C, Mantovani R . (2003). Dynamic recruitment of NF-Y and histone acetyltransferases on cell-cycle promoters. J Biol Chem 278: 30435–30440.

    Article  CAS  Google Scholar 

  • Chen Z, Ruffner DE . (1998). Amplification of closed circular DNA in vitro. Nucleic Acids Res 26: 1126–1127.

    Article  CAS  Google Scholar 

  • Crozat A, Åman P, Mandahl N, Ron D . (1993). Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma. Nature 363: 640–644.

    Article  CAS  Google Scholar 

  • Diffin F, Porter H, Mott MG, Berry PJ, Brown KW . (1994). Rapid and specific diagnosis of t(11;22) translocation in paediatric Ewing's sarcoma and primitive neuroectodermal tumours using RNA-PCR. J Clin Pathol 47: 562–564.

    Article  CAS  Google Scholar 

  • Engström K, Willen H, Kåbjörn-Gustafsson C, Andersson C, Olsson M, Göransson M et al. (2006). The myxoid/round cell liposarcoma fusion oncogene FUS-DDIT3 and the normal DDIT3 induce a liposarcoma phenotype in transfected human fibrosarcoma cells. Am J Pathol 168: 1642–1653.

    Article  Google Scholar 

  • Göransson M, Elias E, Ståhlberg A, Olofsson A, Andersson C, Åman P . (2005). Myxoid liposarcoma FUS-DDIT3 fusion oncogene induces C/EBP beta-mediated interleukin 6 expression. Int J Cancer 115: 556–560.

    Article  Google Scholar 

  • Göransson M, Wedin M, Åman P . (2002). Temperature-dependent localization of TLS-CHOP to splicing factor compartments. Exp Cell Res 278: 125–132.

    Article  Google Scholar 

  • Hinz M, Krappmann D, Eichten A, Heder A, Scheidereit C, Strauss M . (1999). NF-kappaB function in growth control: regulation of cyclin D1 expression and G0/G1-to-S-phase transition. Mol Cell Biol 19: 2690–2698.

    Article  CAS  Google Scholar 

  • Kitamura H, Kanehira K, Okita K, Morimatsu M, Saito M . (2000). MAIL, a novel nuclear I kappa B protein that potentiates LPS-induced IL-6 production. FEBS Lett 485: 53–56.

    Article  CAS  Google Scholar 

  • Kovar H . (2005). Context matters: the hen or egg problem in Ewing's sarcoma. Semin Cancer Biol 15: 189–196.

    Article  CAS  Google Scholar 

  • Kovar H, Zoubek A, Pfleiderer C, Jug G, Auinger A, Aryee D et al. (1994). The EWS gene rearrangement in Ewing tumors: key to the disease. Klin Padiatr 206: 196–200.

    Article  CAS  Google Scholar 

  • Law WJ, Cann KL, Hicks GG . (2006). TLS, EWS and TAF15: a model for transcriptional integration of gene expression. Brief Funct Genomic Proteomic 5: 8–14.

    Article  CAS  Google Scholar 

  • Libermann TA, Baltimore D . (1990). Activation of interleukin-6 gene expression through the NF-kappa B transcription factor. Mol Cell Biol 10: 2327–2334.

    Article  CAS  Google Scholar 

  • Littlewood TD, Hancock DC, Danielian PS, Parker MG, Evan GI . (1995). A modified oestrogen receptor ligand-binding domain as an improved switch for the regulation of heterologous proteins. Nucleic Acids Res 23: 1686–1690.

    Article  CAS  Google Scholar 

  • Matsuo S, Yamazaki S, Takeshige K, Muta T . (2007). Crucial roles of binding sites for NF-kappaB and C/EBPs in IkappaB-zeta-mediated transcriptional activation. Biochem J 405: 605–615.

    Article  CAS  Google Scholar 

  • Matsusaka T, Fujikawa K, Nishio Y, Mukaida N, Matsushima K, Kishimoto T et al. (1993). Transcription factors NF-IL6 and NF-kappa B synergistically activate transcription of the inflammatory cytokines, interleukin 6 and interleukin 8. Proc Natl Acad Sci USA 90: 10193–10197.

    Article  CAS  Google Scholar 

  • Morohoshi F, Ootsuka Y, Arai K, Ichikawa H, Mitani S, Munakata N et al. (1998). Genomic structure of the human RBP56/hTAFII68 and FUS/TLS genes. Gene 221: 191–198.

    Article  CAS  Google Scholar 

  • Motoyama M, Yamazaki S, Eto-Kimura A, Takeshige K, Muta T . (2005). Positive and negative regulation of nuclear factor-kappaB-mediated transcription by IkappaB-zeta, an inducible nuclear protein. J Biol Chem 280: 7444–7451.

    Article  CAS  Google Scholar 

  • Mukaida N, Mahe Y, Matsushima K . (1990). Cooperative interaction of nuclear factor-kappa B- and cis-regulatory enhancer binding protein-like factor binding elements in activating the interleukin-8 gene by pro-inflammatory cytokines. J Biol Chem 265: 21128–21133.

    CAS  PubMed  Google Scholar 

  • Nakopoulou L, Giannopoulou I, Gakiopoulou H, Liapis H, Tzonou A, Davaris PS . (1999). Matrix metalloproteinase-1 and -3 in breast cancer: correlation with progesterone receptors and other clinicopathologic features. Hum Pathol 30: 436–442.

    Article  CAS  Google Scholar 

  • Ohno T, Rao VN, Reddy ES . (1993). EWS/Fli-1 chimeric protein is a transcriptional activator. Cancer Res 53: 5859–5863.

    CAS  PubMed  Google Scholar 

  • Oikawa K, Ishida T, Imamura T, Yoshida K, Takanashi M, Hattori H et al. (2006). Generation of the novel monoclonal antibody against TLS/EWS-CHOP chimeric oncoproteins that is applicable to one of the most sensitive assays for myxoid and round cell liposarcomas. Am J Surg Pathol 30: 351–356.

    Article  Google Scholar 

  • Olofsson A, Willen H, Göransson M, Engström K, Meis-Kindblom JM, Stenman G et al. (2004). Abnormal expression of cell cycle regulators in FUS-CHOP carrying liposarcomas. Int J Oncol 25: 1349–1355.

    CAS  PubMed  Google Scholar 

  • Panagopoulos I, Höglund M, Mertens F, Mandahl N, Mitelman F, Åman P . (1996). Fusion of the EWS and CHOP genes in myxoid liposarcoma. Oncogene 12: 489–494.

    CAS  PubMed  Google Scholar 

  • Panagopoulos I, Mandahl N, Ron D, Höglund M, Nilbert M, Mertens F et al. (1994). Characterization of the CHOP breakpoints and fusion transcripts in myxoid liposarcomas with the 12;16 translocation. Cancer Res 54: 6500–6503.

    CAS  PubMed  Google Scholar 

  • Perez-Losada J, Pintado B, Gutierrez-Adan A, Flores T, Banares-Gonzalez B, del Campo JC et al. (2000a). The chimeric FUS/TLS-CHOP fusion protein specifically induces liposarcomas in transgenic mice. Oncogene 19: 2413–2422.

    Article  CAS  Google Scholar 

  • Perez-Losada J, Sanchez-Martin M, Rodriguez-Garcia MA, Perez-Mancera PA, Pintado B, Flores T et al. (2000b). Liposarcoma initiated by FUS/TLS-CHOP: the FUS/TLS domain plays a critical role in the pathogenesis of liposarcoma. Oncogene 19: 6015–6022.

    Article  CAS  Google Scholar 

  • Rabbitts TH, Forster A, Larson R, Nathan P . (1993). Fusion of the dominant negative transcription regulator CHOP with a novel gene FUS by translocation t(12;16) in malignant liposarcoma. Nat Genet 4: 175–180.

    Article  CAS  Google Scholar 

  • Riggi N, Cironi L, Provero P, Suva ML, Stehle JC, Baumer K et al. (2006). Expression of the FUS-CHOP fusion protein in primary mesenchymal progenitor cells gives rise to a model of myxoid liposarcoma. Cancer Res 66: 7016–7023.

    Article  CAS  Google Scholar 

  • Ron D, Habener JF . (1992). CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription. Genes Dev 6: 439–453.

    Article  CAS  Google Scholar 

  • Sanchez Garcia I, Rabbitts TH . (1994). Transcriptional activation by TAL1 and FUS-CHOP proteins expressed in acute malignancies as a result of chromosomal abnormalities. Proc Natl Acad Sci USA 91: 7869–7873.

    Article  CAS  Google Scholar 

  • Schwarzbach MH, Koesters R, Germann A, Mechtersheimer G, Geisbill J, Winkler S et al. (2004). Comparable transforming capacities and differential gene expression patterns of variant FUS/CHOP fusion transcripts derived from soft tissue liposarcomas. Oncogene 23: 6798–6805.

    Article  CAS  Google Scholar 

  • Ståhlberg A, Håkansson J, Xian X, Semb H, Kubista M . (2004). Properties of the reverse transcription reaction in mRNA quantification. Clin Chem 50: 509–515.

    Article  Google Scholar 

  • Sun SC, Xiao G . (2003). Deregulation of NF-kappaB and its upstream kinases in cancer. Cancer Metastasis Rev 22: 405–422.

    Article  CAS  Google Scholar 

  • Thelin-Järnum S, Göransson M, Burguete AS, Olofsson A, Åman P . (2002). The myxoid liposarcoma specific TLS-CHOP fusion protein localizes to nuclear structures distinct from PML nuclear bodies. Int J Cancer 97: 446–450.

    Article  Google Scholar 

  • Thelin-Järnum S, Lassen C, Panagopoulos I, Mandahl N, Åman P . (1999). Identification of genes differentially expressed in TLS-CHOP carrying myxoid liposarcomas. Int J Cancer 83: 30–33.

    Article  Google Scholar 

  • Totzke G, Essmann F, Pohlmann S, Lindenblatt C, Janicke RU, Schulze-Osthoff K . (2006). A novel member of the IkappaB family, human IkappaB-zeta, inhibits transactivation of p65 and its DNA binding. J Biol Chem 281: 12645–12654.

    Article  CAS  Google Scholar 

  • Trinh DV, Zhu N, Farhang G, Kim BJ, Huxford T . (2008). The nuclear I kappaB protein I kappaB zeta specifically binds NF-kappaB p50 homodimers and forms a ternary complex on kappaB DNA. J Mol Biol 379: 122–135.

    Article  CAS  Google Scholar 

  • Uranishi H, Tetsuka T, Yamashita M, Asamitsu K, Shimizu M, Itoh M et al. (2001). Involvement of the pro-oncoprotein TLS (translocated in liposarcoma) in nuclear factor-kappa B p65-mediated transcription as a coactivator. J Biol Chem 276: 13395–13401.

    Article  CAS  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A et al. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3: RESEARCH0034.

    Article  Google Scholar 

  • Vincenti MP, Coon CI, Brinckerhoff CE . (1998). Nuclear factor kappaB/p50 activates an element in the distal matrix metalloproteinase 1 promoter in interleukin-1beta-stimulated synovial fibroblasts. Arthritis Rheum 41: 1987–1994.

    Article  CAS  Google Scholar 

  • Yamazaki S, Muta T, Takeshige K . (2001). A novel IkappaB protein, IkappaB-zeta, induced by proinflammatory stimuli, negatively regulates nuclear factor-kappaB in the nuclei. J Biol Chem 276: 27657–27662.

    Article  CAS  Google Scholar 

  • Zinszner H, Albalat R, Ron D . (1994). A novel effector domain from the RNA-binding protein TLS or EWS is required for oncogenic transformation by CHOP. Genes Dev 8: 2513–2526.

    Article  CAS  Google Scholar 

  • Zinszner H, Immanuel D, Yin Y, Liang FX, Ron D . (1997). A topogenic role for the oncogenic N-terminus of TLS: nucleolar localization when transcription is inhibited. Oncogene 14: 451–461.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ulric Pedersen for image processing. This work was supported by grants from the Inga-Britt and Arne Lundberg Research Foundation, the Swedish Cancer Society, Assar Gabrielssons Research Foundation and the Johan Jansson Foundation for Cancer Research. RM was supported by an AIRC grant. AS is supported by a postdoctoral fellowship award from the Swedish Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Åman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Göransson, M., Andersson, M., Forni, C. et al. The myxoid liposarcoma FUS-DDIT3 fusion oncoprotein deregulates NF-κB target genes by interaction with NFKBIZ. Oncogene 28, 270–278 (2009). https://doi.org/10.1038/onc.2008.378

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.378

Keywords

This article is cited by

Search

Quick links