Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

p53 controls hPar1 function and expression

Abstract

Human protease-activated receptor 1 (hPar1) is a bona fide receptor of the hemostatic protease thrombin, and has a central function in tumor progression. Inactivation of the tumor suppressor gene p53 is one of the most common genomic alterations occurring in cancer. Here, we address the interrelations between p53 and hPar1 in cancer. We demonstrate an inverse correlation between hPar1 gene expression and wild-type (wt) p53 levels, and a direct correlation with levels of the mutant (mt) p53. Bioinformatic search revealed the presence of at least two p53 motifs in the hPar1 promoter. Indeed, temperature-sensitive (ts) p53 forms reduced hPar1 promoter activity on wt p53 expression. Ectopic introduction of the p53R175H mutant into cells lacking p53 caused a moderate two-fold induction of hPar1 promoter activity. Chromatin immunoprecipitation (ChIP) analyses confirmed a physical association between the p53 protein and hPar1 chromatin fragments. In parallel, PAR1 function is attenuated by p53, as shown by inhibition of pFAK levels and a Matrigel invasion assay. Ectopic reinforcement of hPar1 rescued the inhibition conferred by p53, confirming that p53 directly affects hPar1 expression and function. Altogether, we provide evidence for a direct binding between p53 and hPar1 chromatin, and assign hPar1 as a target of p53.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Ahn J, Murphy M, Kratowicz S, Wang A, Levine AJ, George DL . (1999). Down-regulation of the stathmin/Op18 and FKBP25 genes following p53 induction. Oncogene 18: 5954–5958.

    CAS  PubMed  Google Scholar 

  • Albini A, Iwamoto Y, Kleinman HK, Martin GR, Aaronson SA, Kozlowski JM et al. (1987). A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res 47: 3239–3245.

    CAS  PubMed  Google Scholar 

  • Aylon Y, Oren M . (2007). Living with p53, dying of p53. Cell 130: 597–600.

    Article  CAS  PubMed  Google Scholar 

  • Blagosklonny MV . (2000). p53 from complexity to simplicity: mutant p53 stabilization, gain-of-function, and dominant-negative effect. FASEB J 14: 1901–1907.

    Article  CAS  PubMed  Google Scholar 

  • Booden MA, Eckert LB, Der CJ, Trejo J . (2004). Persistent signaling by dysregulated thrombin receptor trafficking promotes breast carcinoma cell invasion. Mol Cell Biol 24: 1990–1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cadwell C, Zambetti GP . (2001). The effects of wild-type p53 tumor suppressor activity and mutant p53 gain-of-function on cell growth. Gene 277: 15–30.

    Article  CAS  PubMed  Google Scholar 

  • Caunt M, Hu L, Tang T, Brooks PC, Ibrahim S, Karpatkin S . (2006). Growth-regulated oncogene is pivotal in thrombin-induced angiogenesis. Cancer Res 66: 4125–4132.

    Article  CAS  PubMed  Google Scholar 

  • Chay CH, Cooper CR, Gendernalik JD, Dhanasekaran SM, Chinnaiyan AM, Rubin MA et al. (2002). A functional thrombin receptor (PAR1) is expressed on bone-derived prostate cancer cell lines. Urology 60: 760–765.

    Article  PubMed  Google Scholar 

  • Chen X, Ko LJ, Jayaraman L, Prives C . (1996). p53 levels, functional domains, and DNA damage determine the extent of the apoptotic response of tumor cells. Genes Dev 10: 2438–2451.

    Article  CAS  PubMed  Google Scholar 

  • Darmoul D, Gratio V, Devaud H, Lehy T, Laburthe M . (2003). Aberrant expression and activation of the thrombin receptor protease-activated receptor-1 induces cell proliferation and motility in human colon cancer cells. Am J Pathol 162: 1503–1513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dearth LR, Qian H, Wang T, Baroni TE, Zeng J, Chen SW et al. (2007). Inactive full-length p53 mutants lacking dominant wild-type p53 inhibition highlight loss of heterozygosity as an important aspect of p53 status in human cancers. Carcinogenesis 28: 289–298.

    Article  CAS  PubMed  Google Scholar 

  • Di Agostino S, Strano S, Emiliozzi V, Zerbini V, Mottolese M, Sacchi A et al. (2006). Gain of function of mutant p53: the mutant p53/NF-Y protein complex reveals an aberrant transcriptional mechanism of cell cycle regulation. Cancer Cell 10: 191–202.

    Article  CAS  PubMed  Google Scholar 

  • el-Deiry WS, Kern SE, Pietenpol JA, Kinzler KW, Vogelstein B . (1992). Definition of a consensus binding site for p53. Nat Genet 1: 45–49.

    Article  CAS  PubMed  Google Scholar 

  • Even-Ram S, Maoz M, Pokroy E, Reich R, Katz B-Z, Gutwein P et al. (2001). Tumor cell invasion is promoted by activation of protease activated receptor-1 in cooperation with αvβ5 integrin. J Biol Chem 276: 10952–10962.

    Article  CAS  PubMed  Google Scholar 

  • Even-Ram S, Uziely B, Cohen P, Grisaru-Granovsky S, Maoz M, Ginzburg Y et al. (1998). Thrombin receptor overexpression in malignant and physiological invasion processes. Nat Med 4: 909–914.

    Article  CAS  PubMed  Google Scholar 

  • Farmer G, Colgan J, Nakatani Y, Manley JL, Prives C . (1996). Functional interaction between p53, the TATA-binding protein (TBP), andTBP-associated factors in vivo. Mol Cell Biol 16: 4295–4304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamroun D, Kato S, Ishioka C, Claustres M, Beroud C, Soussi T . (2006). The UMD TP53 database and website: update and revisions. Hum Mutat 27: 14–20.

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell 100: 57–70.

    Article  CAS  PubMed  Google Scholar 

  • Ho J, Benchimol S . (2003). Transcriptional repression mediated by the p53 tumour suppressor. Cell Death Differ 10: 404–408.

    Article  CAS  PubMed  Google Scholar 

  • Isaacs WB, Carter BS, Ewing CM . (1991). Wild-type p53 suppresses growth of human prostate cancer cells containing mutant p53 alleles. Cancer Res 51: 4716–4720.

    CAS  PubMed  Google Scholar 

  • Joerger AC, Fersht AR . (2007). Structure-function-rescue: the diverse nature of common p53 cancer mutants. Oncogene 26: 2226–2242; Review.

    Article  CAS  PubMed  Google Scholar 

  • Kastan MB . (2007). Wild-type p53: tumors can't stand it. Cell 128: 837–840; Review.

    Article  CAS  PubMed  Google Scholar 

  • Kato S, Han SY, Liu W, Otsuka K, Shibata H, Kanamaru R et al. (2003). Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc Natl Acad Sci USA 100: 8424–8429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laptenko O, Prives C . (2006). Transcriptional regulation by p53: one protein, many possibilities. Cell Death Differ 13: 951–961.

    Article  CAS  PubMed  Google Scholar 

  • Levine AJ, Hu W, Feng Z . (2006). The P53 pathway: what questions remain to be explored? Cell Death Differ 13: 1027–1036.

    Article  CAS  PubMed  Google Scholar 

  • Li F, Baykal D, Horaist C, Yan CN, Carr BN, Rao GN et al. (1996). Cloning and identification of regulatory sequences of the human thrombin receptor gene. J Biol Chem 271: 26320–26328.

    Article  CAS  PubMed  Google Scholar 

  • Martins CP, Brown-Swigart L, Evan GI . (2006). Modeling the therapeutic efficacy of p53 restoration in tumors. Cell 127: 1323–1334.

    Article  CAS  PubMed  Google Scholar 

  • Mayo LD, Donner DB . (2001). A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci USA 98: 11598–11603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menendez D, Krysiak O, Inga A, Krysiak B, Resnick MA, Schönfelder G . (2006). A SNP in the flt-1 promoter integrates the VEGF system into the p53 transcriptional network. Proc Natl Acad Sci USA 103: 1406–1411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michalovitz D, Halevy O, Oren M . (1990). Conditional inhibition of transformation and of cell proliferation by a temperature-sensitive mutant of p53. Cell 62: 671–680.

    Article  CAS  PubMed  Google Scholar 

  • Milner J, Medcalf EA, Cook AC . (1991). Tumor suppressor p53: analysis of wild-type and mutant p53 complexes. Mol Cell Biol 11: 12–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nystedt S, Ramakrishnan V, Sundelin J . (1996). The proteinase-activated receptor 2 is induced by inflammatory mediators in human endothelial cells. Comparison with the thrombin receptor. J Biol Chem 271: 14910–14915.

    Article  CAS  PubMed  Google Scholar 

  • Olivier M, Eeles R, Hollstein M, Khan MA, Harris CC, Hainaut P . (2002). The IARC TP53 database: new online mutation analysis and recommendations to users. Hum Mutat 19: 607–614.

    Article  CAS  PubMed  Google Scholar 

  • Ossovskaya VS, Mazo IA, Chernov MV, Chernova OB, Strezoska Z, Kondratov R et al. (1996). Use of genetic suppressor elements to dissect distinct biological effects of separate p53 domains. Proc Natl Acad Sci USA 93: 10309–10314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prowald A, Cronauer MV, von Klot C, Eilers T, Rinnab L, Herrmann T et al. (2007). Modulation of beta-catenin-mediated TCF-signalling in prostate cancer cell lines by wild-type and mutant p53. Prostate 67: 1751–1760.

    Article  CAS  PubMed  Google Scholar 

  • Resnick MA, Inga A . (2003). Functional mutants of the sequence-specific transcription factor p53 and implications for master genes of diversity. Proc Natl Acad Sci USA 100: 9934–9939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riewald M, Ruf W . (2005). Protease-activated receptor-1 signaling by activated protein C in cytokine-perturbed endothelial cells is distinct from thrombin signaling. J Biol Chem 280: 19808–19814.

    Article  CAS  PubMed  Google Scholar 

  • Salah Z, Maoz M, Cohen I, Pizov G, Pode D, Runge MS et al. (2005). Identification of a novel functional androgen response element within hPar1 promoter: implications to prostate cancer progression. FASEB J 19: 62–72.

    Article  CAS  PubMed  Google Scholar 

  • Salah Z, Maoz M, Pizov G, Bar-Shavit R . (2007a). Transcriptional regulation of human protease-activated receptor 1: a role for the early growth response-1 protein in prostate cancer. Cancer Res 67: 9835–9843.

    Article  CAS  PubMed  Google Scholar 

  • Salah Z, Maoz M, Pokroy E, Lotem M, Bar-Shavit R, Uziely B . (2007b). Protease-activated receptor-1 (hPar1), a survival factor eliciting tumor progression. Mol Cancer Res 5: 229–240.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt VA, Vitale E, Bahou WF . (1996). Genomic cloning and characterization of the human thrombin receptor gene. Structural similarity to the proteinase activated receptor-2 gene. J Biol Chem 271: 9307–9312.

    Article  CAS  PubMed  Google Scholar 

  • Sharpless NE, DePinho RA . (2007). Cancer biology: gone but not forgotten. Nature 445: 606–607.

    Article  CAS  PubMed  Google Scholar 

  • Sigal A, Rotter V . (2000). Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome. Cancer Res 60: 6788–6793.

    CAS  PubMed  Google Scholar 

  • Soussi T . (2007). p53 alterations in human cancer: more questions than answers. Oncogene 26: 2145–2156; Review.

    Article  CAS  PubMed  Google Scholar 

  • Strano S, Dell'Orso S, Di Agostino S, Fontemaggi G, Sacchi A, Blandino G . (2007). Mutant p53: an oncogenic transcription factor. Oncogene 26: 2212–2219.

    Article  CAS  PubMed  Google Scholar 

  • Tellez C, McCarty M, Ruiz M, Bar-Eli M . (2003). Loss of activator protein-2alpha results in overexpression of protease-activated receptor-1 and correlates with the malignant phenotype of human melanoma. J Biol Chem 278: 46632–46642.

    Article  CAS  PubMed  Google Scholar 

  • Vousden KH, Lane DP . (2007). p53 in health and disease. Nat Rev Mol Cell Biol 8: 275–283; Review.

    Article  CAS  PubMed  Google Scholar 

  • Vousden KH, Lu X . (2002). Live or let die: the cell's response to p53. Nat Rev Cancer 2: 594–604.

    Article  CAS  PubMed  Google Scholar 

  • Weinberg RL, Veprintsev DB, Bycroft M, Fersht AR . (2005). Comparative binding of p53 to its promoter and DNA recognition elements. J Mol Biol 348: 589–596.

    Article  CAS  PubMed  Google Scholar 

  • Weisz L, Zalcenstein A, Stambolsky P, Cohen Y, Goldfinger N, Oren M et al. (2004). Transactivation of the EGR1 gene contributes to mutant p53 gain of function. Cancer Res 64: 8318–8327.

    Article  CAS  PubMed  Google Scholar 

  • Willis A, Jung EJ, Wakefield T, Chen X . (2004). Mutant p53 exerts a dominant negative effect by preventing wild-type p53 from binding to the promoter of its target genes. Oncogene 23: 2330–2338.

    Article  CAS  PubMed  Google Scholar 

  • Wu SQ, Minami T, Donovan DJ, Aird WC . (2002). The proximal serum response element in the Egr-1 promoter mediates response to thrombin in primary human endothelial cells. Blood 100: 4454–4461.

    Article  CAS  PubMed  Google Scholar 

  • Yin YJ, Salah Z, Maoz M, Ram SC, Ochayon S, Neufeld G et al. (2003). Oncogenic transformation induces tumor angiogenesis: a role for PAR1 activation. FASEB J 17: 163–174.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Grant support: Israel Science Foundation by the Israel Academy of Science and Humanities, The Israel Cancer Association and MECC (Middle East Cancer Consortium)—Small Grant Program (R Bar-Shavit).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Bar-Shavit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salah, Z., Haupt, S., Maoz, M. et al. p53 controls hPar1 function and expression. Oncogene 27, 6866–6874 (2008). https://doi.org/10.1038/onc.2008.324

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.324

Keywords

Search

Quick links