Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Klotho: a tumor suppressor and a modulator of the IGF-1 and FGF pathways in human breast cancer

Abstract

Klotho is an anti-aging gene, which has been shown to inhibit the insulin and insulin-like growth factor 1 (IGF-1) pathways in mice hepatocytes and myocytes. As IGF-1 and insulin regulate proliferation, survival and metastasis of breast cancer, we studied klotho expression and activities in human breast cancer. Immunohistochemistry analysis of klotho expression in breast tissue arrays revealed high klotho expression in normal breast samples, but very low expression in breast cancer. In cancer samples, high klotho expression was associated with smaller tumor size and reduced KI67 staining. Forced expression of klotho reduced proliferation of MCF-7 and MDA-MB-231 breast cancer cells, whereas klotho silencing in MCF-7 cells, which normally express klotho, enhanced proliferation. Moreover, forced expression of klotho in these cells, or treatment with soluble klotho, inhibited the activation of IGF-1 and insulin pathways, and induced upregulation of the transcription factor CCAAT/enhancer-binding protein β, a breast cancer growth inhibitor that is negatively regulated by the IGF-1-AKT axis. Co-immunoprecipitation revealed an interaction between klotho and the IGF-1 receptor. Klotho is also a known modulator of the fibroblast growth factor (FGF) pathway, a pathway that inhibits proliferation of breast cancer cells. Studies in breast cancer cells revealed increased activation of the FGF pathway by basic FGF following klotho overexpression. Klotho did not affect activation of the epidermal growth factor pathway in breast cancer cells. These data suggest klotho as a potential tumor suppressor and identify it as an inhibitor of the IGF-1 pathway and activator of the FGF pathway in human breast cancer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Arking DE, Becker DM, Yanek LR, Fallin D, Judge DP, Moy TF et al. (2003). KLOTHO allele status and the risk of early-onset occult coronary artery disease. Am J Hum Genet 72: 1154–1161.

    Article  CAS  Google Scholar 

  • Arking DE, Krebsova A, Macek Sr M, Macek Jr M, Arking A, Mian IS et al. (2002). Association of human aging with a functional variant of klotho. Proc Natl Acad Sci 99: 856–861.

    Article  CAS  Google Scholar 

  • Bartucci M, Morelli C, Mauro L, Ando S, Surmacz E . (2001). Differential insulin-like growth factor I receptor signaling and function in estrogen receptor (ER)-positive MCF-7 and ER-negative MDA-MB-231 breast cancer cells. Cancer Res 61: 6747–6754.

    CAS  PubMed  Google Scholar 

  • Cha S-K, Ortega B, Kurosu H, Rosenblatt KP, Kuro-o M, Huang C-L . (2008). Removal of sialic acid involving Klotho causes cell-surface retention of TRPV5 channel via binding to galectin-1. Proc Natl Acad Sci 105: 9805–9810.

    Article  CAS  Google Scholar 

  • Chang Q, Hoefs S, van der Kemp AW, Topala CN, Bindels RJ, Hoenderop JG . (2005). The {beta}-glucuronidase klotho hydrolyzes and activates the TRPV5 channel. Science 310: 490–493.

    Article  CAS  Google Scholar 

  • Chen C-D, Podvin S, Gillespie E, Leeman SE, Abraham CR . (2007). Insulin stimulates the cleavage and release of the extracellular domain of Klotho by ADAM10 and ADAM17. Proc Natl Acad Sci 104: 19796–19801.

    Article  CAS  Google Scholar 

  • Chihara Y, Rakugi H, Ishikawa K, Ikushima M, Maekawa Y, Ohta J et al. (2006). Klotho protein promotes adipocyte differentiation. Endocrinology 147: 3835–3842.

    Article  CAS  Google Scholar 

  • de Oliveira RM . (2006). Klotho RNAi induces premature senescence of human cells via a p53/p21 dependent pathway. FEBS Letters 580: 5753–5758.

    Article  Google Scholar 

  • den Dekker E, Hoenderop JGJ, Nilius B, Bindels RJM . (2003). The epithelial calcium channels, TRPV5 & TRPV6: from identification towards regulation. Cell Calcium 33: 497–507.

    Article  CAS  Google Scholar 

  • Fenig E, Szyper-Kravitz M, Yerushalmi R, Lahav M, Beery E, Wasserman L et al. (2002). Basic fibroblast growth factor mediated growth inhibition in breast cancer cells is independent of ras signaling pathway. Oncol Rep 9: 875–877.

    CAS  PubMed  Google Scholar 

  • Fenig E, Wieder R, Paglin S, Wang H, Persaud R, Haimovitz-Friedman A et al. (1997). Basic fibroblast growth factor confers growth inhibition and mitogen-activated protein kinase activation in human breast cancer cells. Clin Cancer Res 3: 135–142.

    CAS  PubMed  Google Scholar 

  • Geier A, Beery R, Haimsohn M, Karasik A . (1995). Insulin-like growth factor-1 inhibits cell death induced by anticancer drugs in the MCF-7 cells: involvement of growth factors in drug resistance. Cancer Invest 13: 480–486.

    Article  CAS  Google Scholar 

  • Gery S, Tanosaki S, Bose S, Bose N, Vadgama J, Koeffler HP . (2005). Down-regulation and growth inhibitory role of C/EBP{alpha} in breast cancer. Clin Cancer Res 11: 3184–3190.

    Article  CAS  Google Scholar 

  • Gomis RR, Alarcon C, Nadal C, Van Poznak C, Massague J . (2006). C/EBP[beta] at the core of the TGF[beta] cytostatic response and its evasion in metastatic breast cancer cells. Cancer Cell 10: 203–214.

    Article  CAS  Google Scholar 

  • Haimsohn M, Beery R, Karasik A, Kanety H, Geier A . (2002). Aurintricarboxylic acid induces a distinct activation of the IGF-I receptor signaling within MDA-231 cells. Endocrinology 143: 837–845.

    Article  CAS  Google Scholar 

  • Haluska P, Carboni JM, Loegering DA, Lee FY, Wittman M, Saulnier MG et al. (2006). In vitro and in vivo antitumor effects of the dual insulin-like growth factor-I/insulin receptor inhibitor, BMS-554417. Cancer Res 66: 362–371.

    Article  CAS  Google Scholar 

  • Hsiung R, Zhu W, Klein G, Qin W, Rosenberg A, Park P et al. (2002). High basic fibroblast growth factor levels in nipple aspirate fluid are correlated with breast cancer. Cancer J 8: 303–310.

    Article  Google Scholar 

  • Ikushima M, Rakugi H, Ishikawa K, Maekawa Y, Yamamoto K, Ohta J et al. (2006). Anti-apoptotic and anti-senescence effects of Klotho on vascular endothelial cells. Biochem Biophys Res Commun 339: 827–832.

    Article  CAS  Google Scholar 

  • Imura A, Iwano A, Tohyama O, Tsuji Y, Nozaki K, Hashimoto N et al. (2004). Secreted Klotho protein in sera and CSF: implication for post-translational cleavage in release of Klotho protein from cell membrane. FEBS Lett 565: 143–147.

    Article  CAS  Google Scholar 

  • Imura A, Tsuji Y, Murata M, Maeda R, Kubota K, Iwano A et al. (2007). {alpha}-klotho as a regulator of calcium homeostasis. Science 316: 1615–1618.

    Article  CAS  Google Scholar 

  • Ito S, Kinoshita S, Shiraishi N, Nakagawa S, Sekine S, Fujimori T et al. (2000). Molecular cloning and expression analyses of mouse [beta]klotho, which encodes a novel Klotho family protein. Mech Dev 98: 115–119.

    Article  CAS  Google Scholar 

  • Kato Y, Arakawa E, Kinoshita S, Shirai A, Furuya A, Yamano K et al. (2000). Establishment of the anti-klotho monoclonal antibodies and detection of klotho protein in kidneys. Biochem Biophys Res Commun 267: 597–602.

    Article  CAS  Google Scholar 

  • Kim Y, Kim J-H, Nam YJ, Kong M, Kim YJ, Yu K-H et al. (2006). Klotho is a genetic risk factor for ischemic stroke caused by cardioembolism in Korean females. Neurosci Lett 407: 189–194.

    Article  CAS  Google Scholar 

  • Korah RM, Sysounthone V, Golowa Y, Wieder R . (2000). Basic fibroblast growth factor confers a less malignant phenotype in MDA-MB-231 human breast cancer cells. Cancer Res 60: 733–740.

    CAS  PubMed  Google Scholar 

  • Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T et al. (1997). Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390: 45–51.

    Article  CAS  Google Scholar 

  • Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP et al. (2006). Regulation of fibroblast growth factor-23 signaling by Klotho. J Biol Chem 281: 6120–6123.

    Article  CAS  Google Scholar 

  • Kurosu H, Yamamoto M, Clark JD, Pastor JV, Nandi A, Gurnani P et al. (2005). Suppression of aging in mice by the hormone Klotho. Science 309: 1829–1833.

    Article  CAS  Google Scholar 

  • Lacroix M, Leclercq G . (2004). Relevance of breast cancer cell lines as models for breast tumours: an update. Breast Cancer Res Treatment 83: 249–289.

    Article  CAS  Google Scholar 

  • Li X, Kim JW, Gronborg M, Urlaub H, Lane MD, Tang Q-Q . (2007). Role of cdk2 in the sequential phosphorylation/activation of C/EBPbeta during adipocyte differentiation. Proc Natl Acad Sci 104: 11597–11602.

    Article  CAS  Google Scholar 

  • Matsumura Y, Aizawa H, Shiraki-Iida T, Nagai R, Kuro-o M, Nabeshima Y . (1998). Identification of the human Klotho gene and its two transcripts encoding membrane and secreted Klotho protein. Biochem Biophys Res Commun 242: 626–630.

    Article  CAS  Google Scholar 

  • Mitsiades CS, Mitsiades NS, McMullan CJ, Poulaki V, Shringarpure R, Akiyama M et al. (2004). Inhibition of the insulin-like growth factor receptor-1 tyrosine kinase activity as a therapeutic strategy for multiple myeloma, other hematologic malignancies, and solid tumors. Cancer Cell 5: 221–230.

    Article  CAS  Google Scholar 

  • Ohyama Y, Kurabayashi M, Masuda H, Nakamura T, Aihara Y, Kaname T et al. (1998). Molecular cloning of rat klotho cDNA: markedly decreased expression of klotho by acute inflammatory stress. Biochem Biophys Res Commun 251: 920–925.

    Article  CAS  Google Scholar 

  • Shiraki-Iida T, Aizawa H, Matsumura Y, Sekine S, Iida A, Anazawa H et al. (1998). Structure of the mouse klotho gene and its two transcripts encoding membrane and secreted protein. FEBS Lett 424: 6–10.

    Article  CAS  Google Scholar 

  • Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K et al. (2006). Klotho converts canonical FGF receptor into a specific receptor for FGF23. Science 444: 770–774.

    CAS  Google Scholar 

  • Utsugi T, Ohno T, Ohyama Y, Uchiyama T, Saito Y, Matsumura Y et al. (2000). Decreased insulin production and increased insulin sensitivity in the klotho mutant mouse, a novel animal model for human aging. Metabolism 49: 1118–1123.

    Article  CAS  Google Scholar 

  • Vandermoere F, El Yazidi-Belkoura I, Adriaenssens E, Lemoine J, Hondermarck H . (2005). The antiapoptotic effect of fibroblast growth factor-2 is mediated through nuclear factor-[kappa]B activation induced via interaction between Akt and I[kappa]B kinase-[beta] in breast cancer cells. Oncogene 24: 5482–5491.

    Article  CAS  Google Scholar 

  • Wolf I, Bose S, Williamson EA, Miller CW, Karlan BY, Koeffler HP . (2007). FOXA1: Growth inhibitor and a favorable prognostic factor in human breast cancer. Int J Cancer 120: 1013–1022.

    Article  CAS  Google Scholar 

  • Wolf I, O'Kelly J, Rubinek T, Tong M, Nguyen A, Lin BT et al. (2006a). 15-Hydroxyprostaglandin dehydrogenase is a tumor suppressor of human breast cancer. Cancer Res 66: 7818–7823.

    Article  CAS  Google Scholar 

  • Wolf I, Sadetzki S, Gluck I, Oberman B, Ben-David M, Papa MZ et al. (2006b). Association between diabetes mellitus and adverse characteristics of breast cancer at presentation. Eur J Cancer 42: 1077–1082.

    Article  Google Scholar 

  • Yee D . (2006). Targeting insulin-like growth factor pathways. Br J Cancer 94: 465–468.

    Article  CAS  Google Scholar 

  • Zarrabeitia M, Hernández JL, Valero C, Zarrabeitia A, Ortiz F, Gonzalez-Macias J et al. (2007). Klotho gene polymorphism and male bone mass. Calcif Tissue Int 80: 10–14.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported in part by grants from the United States–Israel Binational Science Foundation (BSF), Jerusalem, Israel; Koschitzky Family Foundation; the Israel Cancer Association; the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv Israel; The Talpiot Medical Leadership Program, Sheba Medical Center; the Inger Fund, Rountree Trust and the Mary Barry Foundation and by grants from the Women's Cancer Research Institute, Samuel Oschin Comprehensive Cancer Institute at Cedars-Sinai Medical Center. HPK is a member of the Molecular Biology Institute and Jonsson Comprehensive Cancer Center at UCLA and holds the endowed Mark Goodson Chair of Oncology Research at Cedars-Sinai Medical Center/UCLA School of Medicine. IW is the Mary Barry Medical Bridges Foundation Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Wolf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolf, I., Levanon-Cohen, S., Bose, S. et al. Klotho: a tumor suppressor and a modulator of the IGF-1 and FGF pathways in human breast cancer. Oncogene 27, 7094–7105 (2008). https://doi.org/10.1038/onc.2008.292

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.292

Keywords

This article is cited by

Search

Quick links