Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Mechanisms of acquired resistance to cetuximab: role of HER (ErbB) family members

Abstract

The epidermal growth factor receptor (EGFR) is a central regulator of proliferation and progression in human cancers. Five EGFR inhibitors, two monoclonal antibodies and three TKIs, have recently gained FDA approval in oncology (cetuximab, panitumumab, erlotinib, gefitinib and lapatinib). These strategies of EGFR inhibition demonstrate major tumor regressions in approximately 10–20% of advanced cancer patients. However, many tumors eventually manifest acquired resistance to treatment. In this study we established and characterized a model to study molecular mechanisms of acquired resistance to the EGFR monoclonal antibody cetuximab. Using high-throughput screening we examined the activity of 42 receptor tyrosine kinases in resistant tumor cells following chronic exposure to cetuximab. Cells developing acquired resistance to cetuximab exhibited increased steady-state EGFR expression secondary to alterations in trafficking and degradation. In addition, cetuximab-resistant cells manifested strong activation of HER2, HER3 and cMET. EGFR upregulation promoted increased dimerization with HER2 and HER3 leading to their transactivation. Blockade of EGFR and HER2 led to loss of HER3 and PI(3)K/Akt activity. These data suggest that acquired resistance to cetuximab is accompanied by dysregulation of EGFR internalization/degradation and subsequent EGFR-dependent activation of HER3. Taken together these findings suggest a rationale for the clinical evaluation of combinatorial anti-HER targeting approaches in tumors manifesting acquired resistance to cetuximab.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

DMSO:

dimethyl sulfoxide

EGFR:

epidermal growth factor receptor

ELISA:

enzyme-linked immunosorbent assay

HGF:

hepatocyte growth factor

mAb:

monoclonal antibody

MAPK:

mitogen-activated protein kinase

NSCLC:

nonsmall cell lung cancer

PI(3)K:

phosphatidylinositol 3′-kinase

RTK:

receptor tyrosine kinase

SCC:

squamous cell carcinoma

TKD:

tyrosine kinase domain

TKI:

tyrosine kinase inhibitor

References

  • Baselga J, Arteaga CL . (2005). Critical update and emerging trends in epidermal growth factor receptor targeting in cancer. J Clin Oncol 23: 2445–2459.

    Article  CAS  PubMed  Google Scholar 

  • Benavente S, Huang S, Armstrong E, Chi A, Chinnaiyan P, Harari PM . (2004). Establishment of acquired resistance to epidermal growth factor receptor (EGFR) inhibitors in human tumor cell lines. AACR Meeting Abstracts 2004: 1230a.

    Google Scholar 

  • Bonner JA, Harari PM, Giralt J, Azarnia N, Shin DM, Cohen RB et al. (2006). Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 354: 567–578.

    Article  CAS  PubMed  Google Scholar 

  • Christensen JG, Schreck R, Burrows J, Kuruganti P, Chan E, Le P et al. (2003). A selective small molecule inhibitor of c-Met kinase inhibits c-Met-dependent phenotypes in vitro and exhibits cytoreductive antitumor activity in vivo. Cancer Res 63: 7345–7355.

    CAS  PubMed  Google Scholar 

  • Ciardiello F, Bianco R, Caputo R, Caputo R, Damiano V, Troiani T et al. (2004). Antitumor activity of ZD6474, a vascular endothelial growth factor receptor tyrosine kinase inhibitor, in human cancer cells with acquired resistance to antiepidermal growth factor receptor therapy. Clin Cancer Res 10: 784–793.

    Article  CAS  PubMed  Google Scholar 

  • Citri A, Skaria KB, Yarden Y . (2003). The deaf and the dumb: the biology of ErbB-2 and ErbB-3. Exp Cell Res 284: 54–65.

    Article  CAS  PubMed  Google Scholar 

  • Citri A, Yarden Y . (2006). EGF-ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol 7: 505–516.

    Article  CAS  PubMed  Google Scholar 

  • Cunningham D, Humblet Y, Siena S, Khayat D, Bleiberg H, Santoro A et al. (2004). Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 351: 337–345.

    Article  CAS  PubMed  Google Scholar 

  • Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO et al. (2007). MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316: 1039–1043.

    Article  CAS  PubMed  Google Scholar 

  • Erjala K, Sundvall M, Junttila TT, Zhang N, Savisalo M, Mali P et al. (2006). Signaling via ErbB2 and ErbB3 associates with resistance and epidermal frowth factor receptor (EGFR) amplification with sensitivity to EGFR inhibitor gefitinib in head and neck squamous cell carcinoma cells. Clin Cancer Res 12: 4103–4111.

    Article  CAS  PubMed  Google Scholar 

  • Franklin MC, Carey KD, Vajdos FF, Leahy DJ, De Vos AM, Sliwkowski MX . (2004). Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer Cell 5: 317–328.

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto N, Wislez M, Zhang J, Iwanaga K, Dackor J, Hanna AE et al. (2005). High expression of ErbB family members and their ligands in lung adenocarcinomas that are sensitive to inhibition of epidermal growth factor receptor. Cancer Res 65: 11478–11485.

    Article  CAS  PubMed  Google Scholar 

  • Furukawa M, Nagatomo I, Kumagai T, Yamadori T, Takahashi R, Yoshimura M et al. (2007). Gefitinib-sensitive EGFR lacking residues 746–750 exhibits hypophosphorylation at tyrosine residue 1045, hypoubiquitination, and impaired endocytosis. DNA Cell Biol 26: 178–185.

    Article  CAS  PubMed  Google Scholar 

  • Gondi V, Huang S, Benavente S, Armstrong E, Harari PM . (2006). Potential mechanisms of acquired Resistance to EGFR inhibitors. AACR Meeting Abstracts 2006: 294b.

    Google Scholar 

  • Grandal MV, Zandi R, Pedersen MW, Willumsen BM, van Deurs B, Poulsen HS . (2007). EGFRvIII escapes down-regulation due to impaired internalization and sorting to lysosomes. Carcinogenesis 28: 1408–1417.

    Article  CAS  PubMed  Google Scholar 

  • Grovdal LM, Stang E, Sorkin A, Madshus IH . (2004). Direct interaction of Cbl with pTyr 1045 of the EGF receptor (EGFR) is required to sort the EGFR to lysosomes for degradation. Exp Cell Res 300: 388–395.

    Article  CAS  PubMed  Google Scholar 

  • Han W, Zhang T, Yu H, Foulke JG, Tang CK . (2006). Hypophosphorylation of residue Y1045 leads to defective downregulation of EGFRvIII. Cancer Biol Ther 5: 1361–1368.

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Armstrong EA, Benavente S, Chinnaiyan P, Harari PM . (2004). Dual-agent molecular targeting of the epidermal growth factor receptor (EGFR): combining anti-EGFR antibody with tyrosine kinase inhibitor. Cancer Res 64: 5355–5362.

    Article  CAS  PubMed  Google Scholar 

  • Matar P, Rojo F, Cassia R, Moreno-Bueno G, Di Cosimo S, Tabernero J et al. (2004). Combined epidermal growth factor receptor targeting with the tyrosine kinase inhibitor gefitinib (ZD1839) and the monoclonal antibody cetuximab (IMC-C225): superiority over single-agent receptor targeting. Clin Cancer Res 10: 6487–6501.

    Article  CAS  PubMed  Google Scholar 

  • Mendelsohn J . (2003). Antibody-mediated EGF receptor blockade as an anticancer therapy: from the laboratory to the clinic. Cancer Immunol Immunother 52: 342–346.

    PubMed  Google Scholar 

  • Mendelsohn J, Baselga J . (2006). Epidermal growth factor receptor targeting in cancer. Semin Oncol 33: 369–385.

    Article  CAS  PubMed  Google Scholar 

  • Mukohara T, Engelman JA, Hanna NH, Yeap BY, Kobayashi S, Lindeman N et al. (2005). Differential effects of gefitinib and cetuximab on non-small-cell lung cancers bearing epidermal growth factor receptor mutations. J Natl Cancer Inst 97: 1185–1194.

    Article  CAS  PubMed  Google Scholar 

  • Pao W, Miller VA, Politi KA, Riely GJ, Somwar R, Zakowski MF et al. (2005). Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2: 1–11.

    Article  Google Scholar 

  • Peruzzi B, Bottaro DP . (2006). Targeting the c-Met signaling pathway in cancer. Clin Cancer Res 12: 3657–3660.

    Article  CAS  PubMed  Google Scholar 

  • Reid A, Vidal L, Shaw H, De Bono J . (2007). Dual inhibition of ErbB1 (EGFR/HER1) and ErbB2 (HER2/neu). Eur J Cancer 43: 481–489.

    Article  CAS  PubMed  Google Scholar 

  • Ritter CA, Perez-Torres M, Rinehart C, Guix M, Dugger T, Engelman JA et al. (2007). Human breast cancer cells selected for resistance to trastuzumab in vivo overexpress epidermal growth factor receptor and ErbB ligands and remain dependent on the ErbB receptor network. Clin Cancer Res 13: 4909–4919.

    Article  CAS  PubMed  Google Scholar 

  • Sequist LV, Bell DW, Lynch TJ, Haber DA . (2007). Molecular predictors of response to epidermal growth factor receptor antagonists in non-small-cell lung cancer. J Clin Oncol 25: 587–595.

    Article  CAS  PubMed  Google Scholar 

  • Sergina NV, Rausch M, Wang D, Blair J, Hann B, Shokat KM et al. (2007). Escape from HER-family tyrosine kinase inhibitor therapy by the kinase-inactive HER3. Nature 445: 437–441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunada H, Magun BE, Mendelsohn J, MacLeod CL . (1986). Monoclonal antibody against epidermal growth factor receptor is internalized without stimulating receptor phosphorylation. Proc Natl Acad Sci USA 83: 3825–3829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou BB, Peyton M, He B, Liu C, Girard L, Caudler E et al. (2006). Targeting ADAM-mediated ligand cleavage to inhibit HER3 and EGFR pathways in non-small cell lung cancer. Cancer Cell 10: 39–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank AstraZeneca (gefitinib), Genentech (erlotinib, 2C4), ImClone (cetuximab), OSI (erlotinib) and Pfizer Global Research (PHA665752 and CI-1033) for supplying EGFR- and cMET-targeting agents. This work was supported in part by NIH R01 CA 113448-01 (PMH) and American Cancer Society Postdoctoral Fellowship (DLW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P M Harari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wheeler, D., Huang, S., Kruser, T. et al. Mechanisms of acquired resistance to cetuximab: role of HER (ErbB) family members. Oncogene 27, 3944–3956 (2008). https://doi.org/10.1038/onc.2008.19

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.19

Keywords

This article is cited by

Search

Quick links