Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Impaired p53 function leads to centrosome amplification, acquired ERα phenotypic heterogeneity and distant metastases in breast cancer MCF-7 xenografts

Abstract

In this study, we establish an MCF-7 xenograft model that mimics the progression of human breast carcinomas typified by loss of p53 integrity, development of centrosome amplification, acquired estrogen receptor (ERα) heterogeneity, overexpression of Mdm2 and metastatic spread from the primary tumor to distant organs. MCF-7 cells with abrogated p53 function (vMCF-7Dnp53) maintained nuclear ERα expression and normal centrosome characteristics in vitro. However, following mitogen stimulation, they developed centrosome amplification and a higher frequency of aberrant mitotic spindles. Centrosome amplification was dependent on cdk2/cyclin activity since treatment with the small molecule inhibitor SU9516 suppressed centriole reduplication. In contrast to the parental MCF-7 cells, when introduced into nude mice as xenografts, tumors derived from the vMCF-7DNp53 cell line developed a strikingly altered phenotype characterized by increased tumor growth, higher tumor histopathology grade, centrosome amplification, loss of nuclear ERα expression, increased expression of Mdm-2 oncoprotein and resistance to the antiestrogen tamoxifen. Importantly, while MCF-7 xenografts did not develop distant metastases, primary tumors derived from vMCF-7DNp53 cells gave rise to lung metastases. Taken together, these observations indicate that abrogation of p53 function and consequent deregulation of the G1/S cell cycle transition leads to centrosome amplification responsible for breast cancer progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

1GX:

cultures reestablished from xenografts

ACI:

August/Copenhagen/Irish

EGF:

epidermal growth factor

ERα:

estrogen receptor α

IGF:

insulin-like growth factor

PVDF:

polyvinylidene difluoride

vMCF-7DNp53:

a variant cell line derived from MCF-7 that expresses a recombinant dominant negative p53 mutation (Val134)

References

  • Akli S, Zheng PJ, Multani AS, Wingate HF, Pathak S, Zhang N et al. (2004). Tumor-specific low molecular weight forms of cyclin E induce genomic instability and resistance to p21, p27, and antiestrogens in breast cancer. Cancer Res 64: 3198–3208.

    Article  CAS  PubMed  Google Scholar 

  • Angeloni SV, Martin MB, Garcia-Morales P, Castro-Galache MD, Ferragut JA, Saceda M . (2004). Regulation of estrogen receptor-alpha expression by the tumor suppressor gene p53 in MCF-7 cells. J Endocrinol 180: 497–504.

    Article  CAS  PubMed  Google Scholar 

  • Bennett RA, Izumi H, Fukasawa K . (2004). Induction of centrosome amplification and chromosome instability in p53-null cells by transient exposure to subtoxic levels of S-phase-targeting anticancer drugs. Oncogene 23: 6823–6829.

    Article  CAS  PubMed  Google Scholar 

  • Bindels EM, Lallemand F, Balkenende A, Verwoerd D, Michalides R . (2002). Involvement of G1/S cyclins in estrogen-independent proliferation of estrogen receptor-positive breast cancer cells. Oncogene 21: 8158–8165.

    Article  CAS  PubMed  Google Scholar 

  • Brinkley BR, Goepfert TM . (1998). Supernumerary centrosomes and cancer: Boveri's hypothesis resurrected. Cell Motil Cytoskeleton 41: 281–288.

    Article  CAS  PubMed  Google Scholar 

  • Calaf GM . (2006). Susceptibility of human breast epithelial cells in vitro to hormones and drugs. Int J Oncol 28: 285–295.

    CAS  PubMed  Google Scholar 

  • Caldon CE, Daly RJ, Sutherland RL, Musgrove EA . (2006). Cell cycle control in breast cancer cells. J Cell Biochem 97: 261–274.

    Article  CAS  PubMed  Google Scholar 

  • Cicatiello L, Addeo R, Sasso A, Altucci L, Petrizzi VB, Borgo R et al. (2004). Estrogens and progesterone promote persistent CCND1 gene activation during G1 by inducing transcriptional derepression via c-Jun/c-Fos/estrogen receptor (progesterone receptor) complex assembly to a distal regulatory element and recruitment of cyclin D1 to its own gene promoter. Mol Cell Biol 24: 7260–7274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D'Assoro AB, Busby R, Suino K, Delva E, Almodovar-Mercado GJ, Johnson H et al. (2004). Genotoxic stress leads to centrosome amplification in breast cancer cell lines that have an inactive G1/S cell cycle checkpoint. Oncogene 23: 4068–4075.

    Article  CAS  PubMed  Google Scholar 

  • D'Assoro AB, Lingle WL, Salisbury JL . (2002). Centrosome amplification and the development of cancer. Oncogene 21: 6146–6153.

    Article  CAS  PubMed  Google Scholar 

  • D'Assoro AB, Stivala F, Barrett S, Ferrigno G, Salisbury JL . (2001). GFP-centrin as a marker for centriole dynamics in the human breast cancer cell line MCF-7. Ital J Anat Embryol 106: 103–110.

    CAS  PubMed  Google Scholar 

  • Daniels MJ, Wang Y, Lee M, Venkitaraman AR . (2004). Abnormal cytokinesis in cells deficient in the breast cancer susceptibility protein BRCA2. Science 306: 876–879.

    Article  CAS  PubMed  Google Scholar 

  • Duensing A, Ghanem L, Steinman RA, Liu Y, Duensing S . (2006a). p21(Waf1/Cip1) deficiency stimulates centriole overduplication. Cell Cycle 5: 2899–2902.

    Article  CAS  PubMed  Google Scholar 

  • Duensing A, Liu Y, Perdreau SA, Kleylein-Sohn J, Nigg EA, Duensing S . (2007). Centriole overduplication through the concurrent formation of multiple daughter centrioles at single maternal templates. Oncogene 26: 6280–6288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duensing A, Liu Y, Tseng M, Malumbres M, Barbacid M, Duensing S . (2006b). Cyclin-dependent kinase 2 is dispensable for normal centrosome duplication but required for oncogene-induced centrosome overduplication. Oncogene 25: 2943–2949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duong V, Boulle N, Daujat S, Chauvet J, Bonnet S, Neel H et al. (2007). Differential regulation of estrogen receptor alpha turnover and transactivation by Mdm2 and stress-inducing agents. Cancer Res 67: 5513–5521.

    Article  CAS  PubMed  Google Scholar 

  • Fukasawa K . (2005). Centrosome amplification, chromosome instability and cancer development. Cancer Lett 230: 6–19.

    Article  CAS  PubMed  Google Scholar 

  • Fukasawa K . (2007). Oncogenes and tumour suppressors take on centrosomes. Nat Rev Cancer 7: 911–924.

    Article  CAS  PubMed  Google Scholar 

  • Fukasawa K, Choi T, Kuriyama R, Rulong S, Vande Woude GF . (1996). Abnormal centrosome amplification in the absence of p53. Science 271: 1744–1747.

    Article  CAS  PubMed  Google Scholar 

  • Giacinti L, Claudio PP, Lopez M, Giordano A . (2006). Epigenetic information and estrogen receptor alpha expression in breast cancer. Oncologist 11: 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Glass AG, Lacey Jr JV, Carreon JD, Hoover RN . (2007). Breast cancer incidence, 1980–2006: combined roles of menopausal hormone therapy, screening mammography, and estrogen receptor status. J Natl Cancer Inst 99: 1152–1161.

    Article  PubMed  Google Scholar 

  • Gottlieb TM, Leal JF, Seger R, Taya Y, Oren M . (2002). Cross-talk between Akt, p53 and Mdm2: possible implications for the regulation of apoptosis. Oncogene 21: 1299–1303.

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa K, Pham L, O'Connor MK, Federspiel MJ, Russell SJ, Peng KW . (2006). Dual therapy of ovarian cancer using measles viruses expressing carcinoembryonic antigen and sodium iodide symporter. Clin Cancer Res 12: 1868–1875.

    Article  CAS  PubMed  Google Scholar 

  • Helguero LA, Faulds MH, Gustafsson JA, Haldosen LA . (2005). Estrogen receptors alfa (ERalpha) and beta (ERbeta) differentially regulate proliferation and apoptosis of the normal murine mammary epithelial cell line HC11. Oncogene 24: 6605–6616.

    Article  CAS  PubMed  Google Scholar 

  • Hernando E, Nahle Z, Juan G, Diaz-Rodriguez E, Alaminos M, Hemann M et al. (2004). Rb inactivation promotes genomic instability by uncoupling cell cycle progression from mitotic control. Nature 430: 797–802.

    Article  CAS  PubMed  Google Scholar 

  • Hwang HC, Clurman BE . (2005). Cyclin E in normal and neoplastic cell cycles. Oncogene 24: 2776–2786.

    Article  CAS  PubMed  Google Scholar 

  • Ingle JN . (2004). Sequencing of endocrine therapy in postmenopausal women with advanced breast cancer. Clin Cancer Res 10: 362S–367S.

    Article  CAS  PubMed  Google Scholar 

  • Joe AK, Memeo L, McKoy J, Mansukhani M, Liu H, Avila-Bront A et al. (2005). Cyclin D1 overexpression is associated with estrogen receptor expression in Caucasian but not African–American breast cancer. Anticancer Res 25: 273–281.

    CAS  PubMed  Google Scholar 

  • Kawamura K, Izumi H, Ma Z, Ikeda R, Moriyama M, Tanaka T et al. (2004). Induction of centrosome amplification and chromosome instability in human bladder cancer cells by p53 mutation and cyclin E overexpression. Cancer Res 64: 4800–4809.

    Article  CAS  PubMed  Google Scholar 

  • Kinyamu HK, Archer TK . (2003). Estrogen receptor-dependent proteasomal degradation of the glucocorticoid receptor is coupled to an increase in mdm2 protein expression. Mol Cell Biol 23: 5867–5881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knippschild U, Oren M, Deppert W . (1996). Abrogation of wild-type p53 mediated growth-inhibition by nuclear exclusion. Oncogene 12: 1755–1765.

    CAS  PubMed  Google Scholar 

  • Kurokawa H, Arteaga CL . (2001). Inhibition of erbB receptor (HER) tyrosine kinases as a strategy to abrogate antiestrogen resistance in human breast cancer. Clin Cancer Res 7: 4436s–4442s.

    CAS  PubMed  Google Scholar 

  • Kurokawa H, Arteaga CL . (2003). ErbB (HER) receptors can abrogate antiestrogen action in human breast cancer by multiple signaling mechanisms. Clin Cancer Res 9: 511S–515S.

    CAS  PubMed  Google Scholar 

  • Kurokawa H, Lenferink AE, Simpson JF, Pisacane PI, Sliwkowski MX, Forbes JT et al. (2000). Inhibition of HER2/neu (erbB-2) and mitogen-activated protein kinases enhances tamoxifen action against HER2-overexpressing, tamoxifen-resistant breast cancer cells. Cancer Res 60: 5887–5894.

    CAS  PubMed  Google Scholar 

  • Lee S, Mohsin SK, Mao S, Hilsenbeck SG, Medina D, Allred DC . (2006). Hormones, receptors, and growth in hyperplastic enlarged lobular units: early potential precursors of breast cancer. Breast Cancer Res 8: R6.

    Article  PubMed  Google Scholar 

  • Lengauer C, Kinzler KW, Vogelstein B . (1998). Genetic instabilities in human cancers. Nature 396: 643–649.

    Article  CAS  PubMed  Google Scholar 

  • Lewis JS, Vijayanathan V, Thomas TJ, Pestell RG, Albanese C, Gallo MA et al. (2005). Activation of cyclin D1 by estradiol and spermine in MCF-7 breast cancer cells: a mechanism involving the p38 MAP kinase and phosphorylation of ATF-2. Oncol Res 15: 113–128.

    Article  CAS  PubMed  Google Scholar 

  • Li JJ, Weroha SJ, Lingle WL, Papa D, Salisbury JL, Li SA . (2004). Estrogen mediates Aurora-A overexpression, centrosome amplification, chromosomal instability, and breast cancer in female ACI rats. Proc Natl Acad Sci USA 101: 18123–18128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lingle WL, Barrett SL, Negron VC, D'Assoro AB, Boeneman K, Liu W et al. (2002). Centrosome amplification drives chromosomal instability in breast tumor development. Proc Natl Acad Sci USA 99: 1978–1983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lingle WL, Lutz WH, Ingle JN, Maihle NJ, Salisbury JL . (1998). Centrosome hypertrophy in human breast tumors: implications for genomic stability and cell polarity. Proc Natl Acad Sci USA 95: 2950–2955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mailand N, Diffley JF . (2005). CDKs promote DNA replication origin licensing in human cells by protecting Cdc6 from APC/C-dependent proteolysis. Cell 122: 915–926.

    Article  CAS  PubMed  Google Scholar 

  • Mawson A, Lai A, Carroll JS, Sergio CM, Mitchell CJ, Sarcevic B . (2005). Estrogen and insulin/IGF-1 cooperatively stimulate cell cycle progression in MCF-7 breast cancer cells through differential regulation of c-Myc and cyclin D1. Mol Cell Endocrinol 229: 161–173.

    Article  CAS  PubMed  Google Scholar 

  • McDonnell DP, Norris JD . (2002). Connections and regulation of the human estrogen receptor. Science 296: 1642–1644.

    Article  CAS  PubMed  Google Scholar 

  • Medina D, Kittrell FS, Shepard A, Contreras A, Rosen JM, Lydon J . (2003). Hormone dependence in premalignant mammary progression. Cancer Res 63: 1067–1072.

    CAS  PubMed  Google Scholar 

  • Sluder G, Hinchcliffe EH . (2000). The coordination of centrosome reproduction with nuclear events during the cell cycle. Centrosome in Cell Replication and Early Development, Current Topics in Developmental Biology. Academic press: San Diego. pp 267–289.

    Google Scholar 

  • Span PN, Tjan-Heijnen VC, Manders P, Beex LV, Sweep CG . (2003). Cyclin-E is a strong predictor of endocrine therapy failure in human breast cancer. Oncogene 22: 4898–4904.

    Article  CAS  PubMed  Google Scholar 

  • Suizu F, Ryo A, Wulf G, Lim J, Lu KP . (2006). Pin1 regulates centrosome duplication, and its overexpression induces centrosome amplification, chromosome instability, and oncogenesis. Mol Cell Biol 26: 1463–1479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torres EM, Sokolsky T, Tucker CM, Chan LY, Boselli M, Dunham MJ et al. (2007). Effects of aneuploidy on cellular physiology and cell division in haploid yeast. Science 317: 916–924.

    Article  CAS  PubMed  Google Scholar 

  • Turbin DA, Cheang MC, Bajdik CD, Gelmon KA, Yorida E, De Luca A et al. (2006). MDM2 protein expression is a negative prognostic marker in breast carcinoma. Mod Pathol 19: 69–74.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NCI CA72836 to JLS, USAMRMC BC022276 to ABD and the Mayo Clinic School of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J L Salisbury.

Rights and permissions

Reprints and permissions

About this article

Cite this article

D'Assoro, A., Busby, R., Acu, I. et al. Impaired p53 function leads to centrosome amplification, acquired ERα phenotypic heterogeneity and distant metastases in breast cancer MCF-7 xenografts. Oncogene 27, 3901–3911 (2008). https://doi.org/10.1038/onc.2008.18

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.18

Keywords

This article is cited by

Search

Quick links