Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

p300 provides a corepressor function by cooperating with YY1 and HDAC3 to repress c-Myc

Abstract

We showed earlier that p300/CBP plays an important role in G1 progression by negatively regulating c-Myc and thereby preventing premature G1 exit. Here, we have studied the mechanism by which p300 represses c-Myc and show that in quiescent cells p300 cooperates with histone deacetylase 3 (HDAC3) to repress transcription. p300 and HDAC3 are recruited to the upstream YY1-binding site of the c-Myc promoter resulting in chromatin deacetylation and repression of c-Myc transcription. Consistent with this, ablation of p300, YY1 or HDAC3 expression results in chromatin acetylation and induction of c-Myc. These three proteins exist as a complex in vivo and form a multiprotein complex with the YY1-binding site in vitro. The C-terminal region of p300 is both necessary and sufficient for the repression of c-Myc. These and other results suggest that in quiescent cells the C-terminal region of p300 provides corepressor function and facilitates the recruitment of p300 and HDAC3 to the YY1-binding site and represses the c-Myc promoter. This corepressor function of p300 prevents the inappropriate induction of c-Myc and S phase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Agalioti T, Chen G, Thanos D . (2002). Deciphering the transcriptional histone acetylation code for a human gene. Cell 111: 381–392.

    Article  CAS  PubMed  Google Scholar 

  • Albert T, Wells J, Funk JO, Pullner A, Raschke EE, Stelzer G et al. (2001). The chromatin structure of the dual c-myc promoter P1/P2 is regulated by separate elements. J Biol Chem 276: 20482–20490.

    Article  CAS  PubMed  Google Scholar 

  • Baluchamy S, Rajabi HN, Thimmapaya R, Navaraj A, Thimmapaya B . (2003). Repression of c-Myc and inhibition of G1 exit in cells conditionally overexpressing p300 that is not dependent on its histone acetyltransferase activity. Proc Natl Acad Sci USA 100: 9524–9529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baluchamy S, Sankar N, Navaraj A, Moran E, Thimmapaya B . (2007). Relationship between E1A binding to cellular proteins, c-myc activation and S-phase induction. Oncogene 26: 781–787.

    Article  CAS  PubMed  Google Scholar 

  • Black JC, Choi JE, Lombardo SR, Carey M . (2006). A mechanism for coordinating chromatin modification and preinitiation complex assembly. Mol Cell 23: 809–818.

    Article  CAS  PubMed  Google Scholar 

  • Christova R, Oelgeschlager T . (2002). Association of human TFIID-promoter complexes with silenced mitotic chromatin in vivo. Nat Cell Biol 4: 79–82.

    Article  CAS  PubMed  Google Scholar 

  • Dang CV . (1999). c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol Cell Biol 19: 1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filippova GN, Fagerlie S, Klenova EM, Myers C, Dehner Y, Goodwin G et al. (1996). An exceptionally conserved transcriptional repressor, CTCF, employs different combinations of zinc fingers to bind diverged promoter sequences of avian and mammalian c-Myc oncogenes. Mol Cell Biol 16: 2802–2813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frisch SM, Mymryk JS . (2002). Adenovirus-5 E1A: paradox and paradigm. Nat Rev Mol Cell Biol 6: 441–4452.

    Article  Google Scholar 

  • Girdwood D, Bumpass D, Vaughan OA, Thain A, Anderson LA, Snowden AW et al. (2003). p300 transcriptional repression is mediated by SUMO modification. Molecular Cell 11: 1043–1054.

    Article  CAS  PubMed  Google Scholar 

  • Goodman RH, Smolik S . (2000). CBP/p300 in cell growth, transformation, and development. Genes Dev 14: 1553–1577.

    CAS  PubMed  Google Scholar 

  • Guermah M, Palhan VB, Tackett AJ, Chait BT, Roeder RG . (2006). Synergistic functions of SII and p300 in productive activator-dependent transcription of chromatin templates. Cell 125: 275–286.

    Article  CAS  PubMed  Google Scholar 

  • Guidez F, Howell L, Isalan M, Cebrat M, Alani RM, Ivins S et al. (2005). Histone acetyltransferase activity of p300 is required for transcriptional repression by the promyelocytic leukemia zinc finger protein. Mol Cell Biol 25: 5552–5566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassig CA, Tong JK, Fleischer TC, Owa T, Grable PG, Ayer DE et al. (1998). A role for histone deacetylase activity in HDAC1-mediated transcritpional repression. Proc Natl Acad Sci USA 95: 3519–3524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He TC, Sparks AB, Rago C, Hermeking H, Zavel L, DaCosta LT et al. (1998). Identification of c-Myc as a target of the APC pathway. Science 281: 1509–1512.

    Article  CAS  PubMed  Google Scholar 

  • Hong R, Chakravarti D . (2003). The human proliferating cell nuclear antigen regulates transcriptional coactivator p300 activity and promotes transcriptional repression. J Biol Chem 278: 44505–44513.

    Article  CAS  PubMed  Google Scholar 

  • Ishizuka T, Lazar MA . (2003). The N-CoR/histone deacetylase 3 complex is required for repression by thyroid hormone receptor. Mol Cell Biol 15: 5122–5131.

    Article  Google Scholar 

  • Iyer NG, Ozdag H, Caldas C . (2004). p300/CBP and cancer. Oncogene 23: 4225–4231.

    Article  CAS  PubMed  Google Scholar 

  • Iyer NG, Xian J, Chin SF, Bannister AJ, Daigo Y, Aparicio S et al. (2007). p300 is required for orderly G1/S transition in human cancer cells. Oncogene 26: 21–29.

    Article  CAS  PubMed  Google Scholar 

  • Izzo WW, Strachan GD, Stubbs MC, Hall DJ . (1999). Transcriptional repression from the c-Myc P2 promoter by the zinc finger protein ZF87/MAZ. J Biol Chem 274: 19498–19506.

    Article  CAS  PubMed  Google Scholar 

  • Jayaraman G, Srinivas R, Duggan C, Ferreira E, Swaminathan S, Somasundaram K et al. (1999). p300/cAMP-responsive element-binding protein interactions with ets-1 and ets-2 in the transcriptional activation of the human stromelysin promoter. J Biol Chem 274: 17342–17352.

    Article  CAS  PubMed  Google Scholar 

  • Kolli S, Buchmann AM, Williams J, Weitzman S, Thimmapaya B . (2001). Antisense-mediated depletion of p300 in human cells leads to premature G1 exit and up-regulation of c-MYC. Proc Natl Acad Sci USA 98: 4646–4651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kung KL, Bronson RT, Chang L, Sieff CA, Livingston DM, Yao T . (2000). Gene dose-dependent control of hematopoiesis and hematologic tumor suppression by CBP. Genes Dev 14: 272–277.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JS, Galvin KM, See RH, Eckner R, Livingston D, Moran E et al. (1995). Relief of YY1 transcriptional repression by adenovirus E1A is mediated by E1A-associated protein p300. Genes Dev 9: 1188–1198.

    Article  CAS  PubMed  Google Scholar 

  • Munshi N, Merika M, Yie J, Senger K, Chen G, Thanos D . (1998). Acetylation of HMG I(Y) by CBP turns of IFNbeta expression by disrupting the enhanceosome. Cell 2: 457–467.

    CAS  Google Scholar 

  • Murphy DJ, Hardy S, Engel DA . (1999). Human SWI-SNF component BRG1 represses transcription of the c-fos gene. Mol Cell Biol 19: 2724–2733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakajima T, Uchida C, Anderson SF, Lee CG, Hurwitz J, Parvin JD et al. (1997). RNA helicase A mediates association of CBP with RNA polymerase II. Cell 90: 1107–1112.

    Article  CAS  PubMed  Google Scholar 

  • Poizat C, Sartorelli V, Chung G, Kloner RA, Kedes L . (2000). Proteasome-mediated degradation of the coactivator p300 impairs cardiac transcription. Mol Cell Biol 20: 8643–8654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajabi HN, Baluchamy S, Kolli S, Nag A, Srinivas R, Raychaudhuri P et al. (2005). Effects of depletion of CREB-binding protein on c-Myc regulation and cell cycle G1-S transition. J Biol Chem 280: 361–374.

    Article  CAS  PubMed  Google Scholar 

  • Santoso B, Kadonaga JT . (2006). Reconstitution of chromatin transcription with purified components reveals a chromatin-specific repressive activity of p300. Nat Struc Mol Biol 2: 131–139.

    Article  Google Scholar 

  • Schwartz YB, Pirrotta V . (2007). Polycomb silencing mechanisms and the management of genomic programmes. Nat Rev Genet 8: 9–22.

    Article  CAS  PubMed  Google Scholar 

  • Soule HD, Maloney TN, Wolman SR, Peterson WDJ, Brenz R, McGrath CM et al. (1990). Isolation and characterization of a spontaneously immortalized human breast epithelial cell line MCF-10. Cancer Res 50: 6075–6086.

    CAS  PubMed  Google Scholar 

  • Sui G, Affar el B, Shi Y, Brignone C, Wall NR, Yin P et al. (2004). Yin Yang 1 is a negative regulator of p53. Cell 117: 859–872.

    Article  CAS  PubMed  Google Scholar 

  • Waltzer L, Bienz M . (1998). Drosophila CBP represses the transcription factor TCF to antagonize wingless signalling. Nature 395: 521–525.

    Article  CAS  PubMed  Google Scholar 

  • Yaciuk P, Moran E . (1991). Analysis with specific polyclonal antiserum indicates that the E1A-associated 300-kDa product is a stable nuclear phosphoprotein that undergoes cell cycle phase-specific modification. Mol Cell Biol 11: 5389–5397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao TP, Oh SP, Fuchs M, Zhou ND, Ch’ng LE, Newsome D et al. (1998). Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell 93: 361–372.

    Article  CAS  PubMed  Google Scholar 

  • Yao YL, Yang WM, Seto E . (2001). Regulation of transcription factor YY1 by acetylation and deacetylation. Mol Cell Biol 21: 5979–5991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Ng HH, Erdjument-Bromage H, Tempst P, Bird A, Reinberg D . (1999). Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev 13: 1924–1935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou X, Lin Y, Rudchenko S, Calame K . (1997). Positive and negative regulation of c-Myc transcription. Curr Top Microbiol Immunol 224: 57–66.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are very grateful to Drs E Seto (Moffits Cancer Center), Dr Wu (University of Oregon), Yang Shi (Harvard University), N Perkins and R Hayward (University of Dundee, UK), and G Chinnadurai (St Louis University) for providing various plasmids and viruses. We also thank Dr Kathy Rundell for helpful discussion and editing this article. This work was supported by the NIH Grant CA73303.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Thimmapaya.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sankar, N., Baluchamy, S., Kadeppagari, RK. et al. p300 provides a corepressor function by cooperating with YY1 and HDAC3 to repress c-Myc. Oncogene 27, 5717–5728 (2008). https://doi.org/10.1038/onc.2008.181

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.181

Keywords

This article is cited by

Search

Quick links