Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Translation elongation factor 1A is essential for regulation of the actin cytoskeleton and cell morphology

Abstract

The binding of eukaryotic translation elongation factor 1A (eEF1A) to actin is a noncanonical function that may link two distinct cellular processes, cytoskeleton organization and gene expression. Using the yeast Saccharomyces cerevisiae, we have established an in vivo assay that directly identifies specific regions and residues of eEF1A responsible for actin interactions and bundling. Using a unique genetic screen, we isolated a series of eEF1A mutants with reduced actin bundling activity. These mutations alter actin cytoskeleton organization but not translation, indicating that these are separate functions of eEF1A. This demonstrates for the first time a direct consequence of eEF1A on cytoskeletal organization in vivo and the physiological significance of this interaction.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Residues 414–427 of domain III of eEF1A are essential for growth inhibition, actin disorganization and cell cycle phenotypes conferred by eEF1A overexpression.
Figure 2: The F422A domain III mutant of eEF1A partially suppresses the growth inhibition and actin disorganization conferred by eEF1A overexpression.
Figure 3: N305S and N329S point mutants of eEF1A-Ura3p do not confer the overexpression phenotypes and cluster on one face of the eEF1A.
Figure 4: N305S and N329S point mutants of eEF1A-Ura3p show modest differences in growth and no change in translation rates.
Figure 5: N305S and N329S eEF1A-Ura3p mutants are deficient in bundling actin in vitro and show differences in cell morphology and actin cytoskeletal organization in vivo.
Figure 6: N305S and N329S eEF1A-Ura3p mutant strains show significantly increased levels of soluble actin.

Accession codes

Accessions

BINDPlus

References

  1. 1

    Ong, L.L., Er, C.P., Ho, A., Aung, M.T. & Yu, H. Kinectin anchors the translation elongation factor-1δ to the endoplasmic reticulum. J. Biol. Chem. 278, 32115–32123 (2003).

    CAS  Article  Google Scholar 

  2. 2

    Furukawa, R. et al. Elongation factor 1β is an actin-binding protein. Biochim. Biophys. Acta 1527, 130–140 (2001).

    CAS  Article  Google Scholar 

  3. 3

    Ko, Y.G., Kang, Y.S., Kim, E.K., Park, S.G. & Kim, S. Nucleolar localization of human methionyl-tRNA synthetase and its role in ribosomal RNA synthesis. J. Cell Biol. 149, 567–574 (2000).

    CAS  Article  Google Scholar 

  4. 4

    Chuang, S.M. et al. Proteasome-mediated degradation of cotranslationally damaged proteins involves translation elongation factor 1A. Mol. Cell. Biol. 25, 403–413 (2005).

    CAS  Article  Google Scholar 

  5. 5

    Chen, E., Proestou, G., Bourbeau, D. & Wang, E. Rapid up-regulation of peptide elongation factor EF-1α protein levels is an immediate early event during oxidative stress-induced apoptosis. Exp. Cell Res. 259, 140–148 (2000).

    CAS  Article  Google Scholar 

  6. 6

    Stapulionis, R., Kolli, S. & Deutscher, M.P. Efficient mammalian protein synthesis requires an intact F-actin system. J. Biol. Chem. 272, 24980–24986 (1997).

    CAS  Article  Google Scholar 

  7. 7

    Dang, C.V., Yang, D.C. & Pollard, T.D. Association of methionyl-tRNA synthetase with detergent-insoluble components of the rough endoplasmic reticulum. J. Cell Biol. 96, 1138–1147 (1983).

    CAS  Article  Google Scholar 

  8. 8

    Mirande, M. et al. Association of an aminoacyl-tRNA synthetase complex and of phenylalanyl-tRNA synthetase with the cytoskeletal framework fraction from mammalian cells. Exp. Cell Res. 156, 91–102 (1985).

    CAS  Article  Google Scholar 

  9. 9

    Howe, J.G. & Hershey, J.W. Translational initiation factor and ribosome association with the cytoskeletal framework fraction from HeLa cells. Cell 37, 85–93 (1984).

    CAS  Article  Google Scholar 

  10. 10

    Bektas, M., Nurten, R., Gurel, Z., Sayers, Z. & Bermek, E. Interactions of eukaryotic elongation factor 2 with actin: a possible link between protein synthetic machinery and cytoskeleton. FEBS Lett. 356, 89–93 (1994).

    CAS  Article  Google Scholar 

  11. 11

    Edmonds, B.T. et al. Elongation factor-1α is an overexpressed actin binding protein in metastatic rat mammary adenocarcinoma. J. Cell Sci. 109, 2705–2714 (1996).

    CAS  PubMed  Google Scholar 

  12. 12

    Yang, F., Demma, M., Warren, V., Dharmawardhane, S. & Condeelis, J. Identification of an actin-binding protein from Dictyostelium as elongation factor 1a. Nature 347, 494–496 (1990).

    CAS  Article  Google Scholar 

  13. 13

    Munshi, R. et al. Overexpression of translation elongation factor 1α affects the organization and function of the actin cytoskeleton in yeast. Genetics 157, 1425–1436 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Liu, G. et al. Interactions of elongation factor 1α with F-actin and β-actin mRNA: implications for anchoring mRNA in cell protrusions. Mol. Biol. Cell 13, 579–592 (2002).

    CAS  Article  Google Scholar 

  15. 15

    Carvalho, M.D., Carvalho, J.F. & Merrick, W.C. Biological characterization of various forms of elongation factor 1 from rabbit reticulocytes. Arch. Biochem. Biophys. 234, 603–611 (1984).

    CAS  Article  Google Scholar 

  16. 16

    Edmonds, B.T., Murray, J. & Condeelis, J. pH regulation of the F-actin binding properties of Dictyostelium elongation factor 1a. J. Biol. Chem. 270, 15222–15230 (1995).

    CAS  Article  Google Scholar 

  17. 17

    Owen, C.H., DeRosier, D.J. & Condeelis, J. Actin crosslinking protein EF-1a of Dictyostelium discoideum has a unique bonding rule that allows square-packed bundles. J. Struct. Biol. 109, 248–254 (1992).

    CAS  Article  Google Scholar 

  18. 18

    Murray, J.W., Edmonds, B.T., Liu, G. & Condeelis, J. Bundling of actin filaments by elongation factor 1a inhibits polymerization at filament ends. J. Cell Biol. 135, 1309–1321 (1996).

    CAS  Article  Google Scholar 

  19. 19

    Durso, N.A. & Cyr, R.J. A calmodulin-sensitive interaction between microtubules and a higher plant homolog of elongation factor-1α. Plant Cell 6, 893–905 (1994).

    CAS  Article  Google Scholar 

  20. 20

    Kuriyama, R., Savereide, P., Lefebuve, P. & Dasgupta, S. The predicted amino acid sequence of a centrosphere protein in dividing sea urchin eggs is similar to elongation factor (EF-1a). J. Cell Sci. 95, 231–236 (1990).

    CAS  PubMed  Google Scholar 

  21. 21

    Liu, G. et al. F-actin sequesters elongation factor 1a from interaction with aminoacyl-tRNA in a pH-dependent reaction. J. Cell Biol. 135, 953–963 (1996).

    CAS  Article  Google Scholar 

  22. 22

    Andersen, G.R. & Nyborg, J. Structural studies of eukaryotic elongation factors. Cold Spring Harb. Symp. Quant. Biol. 66, 425–437 (2001).

    CAS  Article  Google Scholar 

  23. 23

    Anand, M., Chakraburtty, K., Marton, M.J., Hinnebusch, A.G. & Kinzy, T.G. Functional interactions between yeast translation elongation factors eEF1A and eEF3. J. Biol. Chem. 278, 6985–6991 (2003).

    CAS  Article  Google Scholar 

  24. 24

    Edmonds, B.T., Bell, A., Wyckoff, J., Condeelis, J. & Leyh, T.S. The effect of F-actin on the binding and hydrolysis of guanine nucleotide by Dictyostelium elongation factor 1A. J. Biol. Chem. 273, 10288–10295 (1998).

    CAS  Article  Google Scholar 

  25. 25

    Kandl, K.A. et al. Identification of a role for actin in translational fidelity in yeast. Mol. Genet. Genomics 268, 10–18 (2002).

    CAS  Article  Google Scholar 

  26. 26

    Drees, B., Brown, C., Barrell, B.G. & Bretscher, A. Tropomyosin is essential in yeast, yet the TPM1 and TPM2 products perform distinct functions. J. Cell Biol. 128, 383–392 (1995).

    CAS  Article  Google Scholar 

  27. 27

    Evangelista, M., Pruyne, D., Amberg, D.C., Boone, C. & Bretscher, A. Formins direct Arp2/3-independent actin filament assembly to polarize cell growth in yeast. Nat. Cell Biol. 4, 32–41 (2002).

    CAS  Article  Google Scholar 

  28. 28

    Hermann, G.J., King, E.J. & Shaw, J.M. The yeast gene, MDM20, is necessary for mitochondrial inheritance and organization of the actin cytoskeleton. J. Cell Biol. 137, 141–153 (1997).

    CAS  Article  Google Scholar 

  29. 29

    Ito, H., Fukuda, Y., Murata, K. & Kimura, A. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153, 163–168 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Sikorski, R.S. & Hieter, P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19–27 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Towbin, H., Staehelin, T. & Gordon, J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76, 4350–4354 (1979).

    CAS  Article  Google Scholar 

  32. 32

    Honts, J.E., Sandrock, T.S., Brower, S.M., O'Dell, J.L. & Adams, A.E.M. Actin mutations that show suppression with fimbrin mutations identify a likely fimbrin-binding site on actin. J. Cell Biol. 126, 413–422 (1994).

    CAS  Article  Google Scholar 

  33. 33

    Cavallius, J., Popkie, A.P. & Merrick, W.C. Site-directed mutants of post-translationally modified sites of yeast eEF1A using a shuttle vector containing a chromogenic switch. Biochem. Biophys. Acta 1350, 345–358 (1997).

    CAS  PubMed  Google Scholar 

  34. 34

    Baim, S.B., Pietras, D.F., Eustice, D.C. & Sherman, F. A mutation allowing an mRNA secondary structure diminishes translation of Saccharomyces cerevisiae iso-1-cytochrome C. Mol. Cell. Biol. 5, 1839–1846 (1985).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the assistance of the Cancer Institute of New Jersey/Environmental and Occupational Health Sciences Institute Analytical Cytometry Image Analysis, the Robert Wood Johnson Medical School (RWJMS) DNA Core Facility sequencing laboratory and the fluorescence microscopy laboratory in the RWJMS Department of Pharmacology. This research was supported by a grant from the US National Institutes of Health (GM62789 to T.G.K.).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Terri Goss Kinzy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

N305S and N329S eEF1A/Ura3p mutant do not show polyribosomes accumulation. (PDF 1118 kb)

Supplementary Table 1

S. cerevisiae strains used in this study. (PDF 97 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gross, S., Kinzy, T. Translation elongation factor 1A is essential for regulation of the actin cytoskeleton and cell morphology. Nat Struct Mol Biol 12, 772–778 (2005). https://doi.org/10.1038/nsmb979

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing