Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The tail structure of bacteriophage T4 and its mechanism of contraction

Abstract

Bacteriophage T4 and related viruses have a contractile tail that serves as an efficient mechanical device for infecting bacteria. A three-dimensional cryo-EM reconstruction of the mature T4 tail assembly at 15-Å resolution shows the hexagonal dome-shaped baseplate, the extended contractile sheath, the long tail fibers attached to the baseplate and the collar formed by six whiskers that interact with the long tail fibers. Comparison with the structure of the contracted tail shows that tail contraction is associated with a substantial rearrangement of the domains within the sheath protein and results in shortening of the sheath to about one-third of its original length. During contraction, the tail tube extends beneath the baseplate by about one-half of its total length and rotates by 345°, allowing it to cross the host's periplasmic space.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stereo diagram of bacteriophage T4 showing the extended tail, the LTFs, the neck and a small part of the capsid.
Figure 2: The neck and collar of bacteriophage T4.
Figure 3: The structure of the collar and whiskers.
Figure 4: Conformational changes in the tail sheath.
Figure 5: A helical strand of gp18 in the extended (green) and contracted (brown) tail.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Protein Data Bank

References

  1. Leiman, P.G., Chipman, P.R., Kostyuchenko, V.A., Mesyanzhinov, V.V. & Rossmann, M.G. Three-dimensional rearrangement of proteins in the tail of bacteriophage T4 on infection of its host. Cell 118, 419–429 (2004).

    Article  CAS  Google Scholar 

  2. Kanamaru, S. et al. Structure of the cell-puncturing device of bacteriophage T4. Nature 415, 553–557 (2002).

    Article  CAS  Google Scholar 

  3. Letellier, L., Boulanger, P., de Frutos, M. & Jacquot, P. Channeling phage DNA through membranes: from in vivo to in vitro. Res. Microbiol. 154, 283–287 (2003).

    Article  CAS  Google Scholar 

  4. Coombs, D.H. & Arisaka, F. in Molecular Biology of Bacteriophage T4 (ed. Karam, J.D.) 259–281 (American Society for Microbiology, Washington, DC, 1994).

    Google Scholar 

  5. Venyaminov, S.Y., Rodikova, L.P., Metlina, A.L. & Poglazov, B.F. Secondary structure change of bacteriophage T4 sheath protein during sheath contraction. J. Mol. Biol. 98, 657–664 (1975).

    Article  CAS  Google Scholar 

  6. Moody, M.F. & Makowski, L. X-ray diffraction study of tail-tubes from bacteriophage T2L. J. Mol. Biol. 150, 217–244 (1981).

    Article  CAS  Google Scholar 

  7. King, J. Assembly of the tail of bacteriophage T4. J. Mol. Biol. 32, 231–262 (1968).

    Article  CAS  Google Scholar 

  8. Coombs, D.H. & Eiserling, F.A. Studies on the structure, protein composition and assembly of the neck of bacteriophage T4. J. Mol. Biol. 116, 375–405 (1977).

    Article  CAS  Google Scholar 

  9. Cerritelli, M.E., Wall, J.S., Simon, M.N., Conway, J.F. & Steven, A.C. Stoichiometry and domainal organization of the long tail-fiber of bacteriophage T4: a hinged viral adhesin. J. Mol. Biol. 260, 767–780 (1996).

    Article  CAS  Google Scholar 

  10. Makhov, A.M. et al. The short tail-fiber of bacteriophage T4: molecular structure and a mechanism for its conformational transition. Virology 194, 117–127 (1993).

    Article  CAS  Google Scholar 

  11. Kikuchi, Y. & King, J. Genetic control of bacteriophage T4 baseplate morphogenesis. III. Formation of the central plug and overall assembly pathway. J. Mol. Biol. 99, 695–716 (1975).

    Article  CAS  Google Scholar 

  12. Kostyuchenko, V.A. et al. The structure of bacteriophage T4 gene product 9: the trigger for tail contraction. Structure Fold Des. 7, 1213–1222 (1999).

    Article  CAS  Google Scholar 

  13. Kellenberger, E., Stauffer, E., Haner, M., Lustig, A. & Karamata, D. Mechanism of the long tail-fiber deployment of bacteriophages T-even and its role in adsorption, infection and sedimentation. Biophys. Chem. 59, 41–59 (1996).

    Article  CAS  Google Scholar 

  14. DeRosier, D.J. & Klug, A. Reconstruction of three dimensional structures from electron micrographs. Nature 217, 130–134 (1968).

    Article  CAS  Google Scholar 

  15. Kostyuchenko, V.A. et al. Three-dimensional structure of bacteriophage T4 baseplate. Nat. Struct. Biol. 10, 688–693 (2003).

    Article  CAS  Google Scholar 

  16. Smith, P.R., Aebi, U., Josephs, R. & Kessel, M. Studies of the structure of the T4 bacteriophage tail sheath. I. The recovery of three-dimensional structural information from the extended sheath. J. Mol. Biol. 106, 243–271 (1976).

    Article  CAS  Google Scholar 

  17. Dewey, M.J., Wiberg, J.S. & Frankel, F.R. Genetic control of whisker antigen of bacteriophage T4D. J. Mol. Biol. 84, 625–634 (1974).

    Article  CAS  Google Scholar 

  18. Efimov, V.P., Nepluev, I.V. & Mesyanzhinov, V.V. Bacteriophage T4 as a surface display vector. Virus Genes 10, 173–177 (1995).

    Article  CAS  Google Scholar 

  19. Boudko, S.P. et al. Domain organization, folding and stability of bacteriophage T4 fibritin, a segmented coiled-coil protein. Eur. J. Biochem. 269, 833–841 (2002).

    Article  CAS  Google Scholar 

  20. Strelkov, S.V., Tao, Y., Shneider, M.M., Mesyanzhinov, V.V. & Rossmann, M.G. Structure of bacteriophage T4 fibritin M: a troublesome packing arrangement. Acta Crystallogr. D Biol. Crystallogr. 54, 805–816 (1998).

    Article  CAS  Google Scholar 

  21. Tao, Y., Strelkov, S.V., Mesyanzhinov, V.V. & Rossmann, M.G. Structure of bacteriophage T4 fibritin: a segmented coiled coil and the role of the C-terminal domain. Structure 5, 789–798 (1997).

    Article  CAS  Google Scholar 

  22. Amos, L.A. & Klug, A. Three-dimensional image reconstructions of the contractile tail of T4 bacteriophage. J. Mol. Biol. 99, 51–64 (1975).

    Article  CAS  Google Scholar 

  23. Arisaka, F., Takeda, S., Funane, K., Nishijima, N. & Ishii, S. Structural studies of the contractile tail sheath protein of bacteriophage T4. 2. Structural analyses of the tail sheath protein, gp18, by limited proteolysis, immunoblotting and immunoelectron microscopy. Biochemistry 29, 5057–5062 (1990).

    Article  CAS  Google Scholar 

  24. Moody, M.F. Sheath of bacteriophage T4. 3. Contraction mechanism deduced from partially contracted sheaths. J. Mol. Biol. 80, 613–635 (1973).

    Article  CAS  Google Scholar 

  25. Serysheva, I.I., Tourkin, A.I., Bartish, I.V. & Poglazov, B.F. GTPase activity of bacteriophage T4 sheath protein. J. Mol. Biol. 223, 23–25 (1992).

    Article  CAS  Google Scholar 

  26. Conway, J.F. & Steven, A.C. Methods for reconstructing density maps of “single” particles from cryoelectron micrographs to subnanometer resolution. J. Struct. Biol. 128, 106–118 (1999).

    Article  CAS  Google Scholar 

  27. Frank, J. et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190–199 (1996).

    Article  CAS  Google Scholar 

  28. Penczek, P., Radermacher, M. & Frank, J. Three-dimensional reconstruction of single particles embedded in ice. Ultramicroscopy 40, 33–53 (1992).

    Article  CAS  Google Scholar 

  29. Wriggers, W., Milligan, R.A. & McCammon, J.A. Situs: a package for docking crystal structures into low-resolution maps from electron microscopy. J. Struct. Biol. 125, 185–195 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Wilder and C. Towell for help in the preparation of the manuscript. The work was supported by a US National Science Foundation grant to M.G.R., a Howard Hughes Medical Institute grant and a Russian Fund for Basic Research grant to V.V.M., a Human Frontiers Science Program grant to M.G.R., F.A. and V.V.M., a Keck Foundation grant to M.G.R. for the purchase of the Philips CM300 field emission gun microscope and a reinvestment grant from Purdue University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G Rossmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kostyuchenko, V., Chipman, P., Leiman, P. et al. The tail structure of bacteriophage T4 and its mechanism of contraction. Nat Struct Mol Biol 12, 810–813 (2005). https://doi.org/10.1038/nsmb975

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb975

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing