Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of archaeal toxin-antitoxin RelE–RelB complex with implications for toxin activity and antitoxin effects

Abstract

The Escherichia coli chromosome encodes toxin-antitoxin pairs. The toxin RelE cleaves mRNA positioned at the A-site in ribosomes, whereas the antitoxin RelB relieves the effect of RelE. The hyperthermophilic archaeon Pyrococcus horikoshii OT3 has the archaeal homologs aRelE and aRelB. Here we report the crystal structure of aRelE in complex with aRelB determined at a resolution of 2.3 Å. aRelE folds into an α/β structure, whereas aRelB lacks a distinct hydrophobic core and extensively wraps around the molecular surface of aRelE. Neither component shows structural homology to known ribonucleases or their inhibitors. Site-directed mutagenesis suggests that Arg85, in the C-terminal region, is strongly involved in the functional activity of aRelE, whereas Arg40, Leu48, Arg58 and Arg65 play a modest role in the toxin's activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures of aRelB and aRelE.
Figure 2: Gel filtration chromatography of aRelB–aRelE and aRelE.
Figure 3: View of the heterodimer interface between aRelB and aRelE.
Figure 4: Characterization of aRelE mutants.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Gerdes, K. Toxin-antitoxin modules may regulate synthesis of macromolecules during nutritional stress. J. Bacteriol. 182, 561–572 (2000).

    Article  CAS  Google Scholar 

  2. Galvani, C., Terry, J. & Ishiguro, E.E. Purification of the RelB and RelE proteins of Escherichia coli: RelE binds to RelB and to ribosomes. J. Bacteriol. 183, 2700–2703 (2001).

    Article  CAS  Google Scholar 

  3. Gotfredsen, M. & Gerdes, K. The Escherichia coli relBE genes belong to a new toxin-antitoxin gene family. Mol. Microbiol. 29, 1065–1076 (1998).

    Article  CAS  Google Scholar 

  4. Christensen, S.K., Mikkelsen, M., Pedersen, K. & Gerdes, K. RelE, a global inhibitor of translation, is activated during nutritional stress. Proc. Natl. Acad. Sci. USA 98, 14328–14333 (2001).

    Article  CAS  Google Scholar 

  5. Bech, F.W., Jorgensen, S.T., Diderichsen, B. & Karlstrom, O.H. Sequence of the relB transcription unit from Escherichia coli and identification of the relB gene. EMBO J. 4, 1059–1066 (1985).

    Article  CAS  Google Scholar 

  6. Masuda, Y., Miyakawa, K., Nishimura, Y. & Ohtsubo, E. chpA and chpB, Escherichia coli chromosomal homologs of the pem locus responsible for stable maintenance of plasmid R100. J. Bacteriol. 164, 1124–1135 (1993).

    Google Scholar 

  7. Aizenman, E., Engelberg-Kulka, H. & Glaser, G. An Escherichia coli chromosomal 'addiction module' regulated by guanosine 3′,5′-bispyrophosphate: a model for programmed bacterial cell death. Proc. Natl. Acad. Sci. USA 93, 6059–6063 (1996).

    Article  CAS  Google Scholar 

  8. Grady, R. & Hayes, F. Axe-Txe, a broad-spectrum proteic toxin-antitoxin system specified by a multidrug resistant, clinical isolate of Enterococcus faecium. Mol. Microbiol. 47, 1419–1432 (2003).

    Article  CAS  Google Scholar 

  9. Pedersen, K., Christensen, S.K. & Gerdes, K. Rapid induction and reversal of a bacteriostatic condition by controlled expression of toxins and antitoxins. Mol. Microbiol. 45, 501–510 (2002).

    Article  CAS  Google Scholar 

  10. Pedersen, K. et al. The bacterial toxin RelE displays codon-specific cleavage of mRNAs in the ribosomal A site. Cell 112, 131–140 (2003).

    Article  CAS  Google Scholar 

  11. Christensen, S.K., Pedersen, K., Hansen, G.H. & Gerdes, K. Toxin-antitoxin loci as stress-responsible-elements. ChpAK/MazF and ChpBK cleave translated RNAs and are counteracted by tmRNA. J. Mol. Biol. 332, 809–819 (2003).

    Article  CAS  Google Scholar 

  12. Zhang, Y. et al. MazF cleaves cellular mRNAs specifically at ACA to block protein synthesis in Escherichia coli. Mol. Cell 12, 913–923 (2003).

    Article  CAS  Google Scholar 

  13. Kamada, K., Hanaoka, F. & Burley, S.K. Crystal structure of the Maz/MazF complex: molecular bases of antidote-toxin recognition. Mol. Cell 11, 875–884 (2003).

    Article  CAS  Google Scholar 

  14. de la Cueva-Mendez, G. Distressing bacteria. Structure of a prokaryotic detox program. Mol. Cell 11, 848–850 (2003).

    Article  CAS  Google Scholar 

  15. Christensen, S.K. & Gerdes, K. RelE toxins from bacteria and archaea cleave mRNAs on translating ribosomes, which are rescued by tmRNA. Mol. Microbiol. 48, 1389–1400 (2003).

    Article  CAS  Google Scholar 

  16. Takagi, H. et al. Crystal structure of the ribonuclease P protein Ph1877p from hyperthermophilic archaeon Pyrococcus horikoshii OT3. Biochem. Biophys. Res. Commun. 319, 787–794 (2004).

    Article  CAS  Google Scholar 

  17. Kakuta, Y. et al. Crystal structure of the regulatory subunit of archaeal initiation factor 2B (aIF2B) from hyperthermophilic archaeon Pyrococcus horikoshii OT3: a proposed structure of the regulatory subcomplex of eukaryotic IF2B. Biochem. Biophys. Res. Commun. 319, 725–732 (2004).

    Article  CAS  Google Scholar 

  18. Kawarabayashi, Y. et al. Complete genome sequence of an aerobic thermoacidophilic crenarchaeon, Sulfolobus tokodaii strain 7. DNA Res. 8, 123–140 (2001).

    Article  Google Scholar 

  19. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  Google Scholar 

  20. Buckle, A.M., Schreiber, G. & Fersht, A.R. Protein-protein recognition: crystal structural analysis of a barnase–barstar complex at 2.0-Å resolution. Biochemistry 33, 8878–8889 (1994).

    Article  CAS  Google Scholar 

  21. Kolade, O.O. et al. Structural aspects of the inhibition of DNase and rRNase colicins by their immunity proteins. Biochimie 84, 439–446 (2002).

    Article  CAS  Google Scholar 

  22. Graille, M., Mora, L., Buckingham, R.H., van Tilbeurgh, H. & Zamaroczy, M. Structural inhibition of the colicin D tRNase by the tRNA-mimicking immunity protein. EMBO J. 23, 1474–1482 (2004).

    Article  CAS  Google Scholar 

  23. Landschulz, W.H., Johnson, P.F. & McKnight, S.L. The DNA binding domain of the rat liver nuclear protein C/EBP is bipartite. Science 243, 1681–1688 (1989).

    Article  CAS  Google Scholar 

  24. Vinson, C.R., Sigler, P.B. & McKnight, S.L. Scissors-grip model for DNA recognition by a family of leucine zipper proteins. Science 246, 911–246 (1989).

    Article  CAS  Google Scholar 

  25. Weiss, M.A., Ellenberger, T., Wobbe, C.R., Lee, J. P, Harrison, S.C. & Struhl, K. Folding transition in the DNA-binding domain of GCN4 on specific binding to DNA. Nature 347, 575–578 (1990).

    Article  CAS  Google Scholar 

  26. Ellenberger, T.E., Brandl, C.J., Struhl, K. & Harrison, S.C. The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted a helices: crystal structure of the protein–DNA complex. Cell 71, 1223–1237 (1992).

    Article  CAS  Google Scholar 

  27. Saudek, V. et al. Solution structure of the basic region from the transcriptional activator GCN4. Biochemistry 30, 1310–1317 (1991).

    Article  CAS  Google Scholar 

  28. Nissen, P. et al. Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog. Science 270, 1464–1472 (1995).

    Article  CAS  Google Scholar 

  29. Song, H. et al. The crystal structure of human eukaryotic release factor eRF1-mechanism of stop codon recognition and peptidyl-tRNA hydrolysis. Cell 100, 311–321 (2000).

    Article  CAS  Google Scholar 

  30. Vestergaard, B. et al. Bacterial polypeptide release factor RF2 is structurally distinct from eukaryotic eRF1. Mol. Cell 8, 1375–1382 (2001).

    Article  CAS  Google Scholar 

  31. Selmer, M., Al-Karadaghi, S., Hirokawa, G., Kaji, A. & Liljas A. Crystal structure of Thermotoga maritime ribosome recycling factor: a tRNA mimic. Science 286, 2349–2352 (1999).

    Article  CAS  Google Scholar 

  32. Nakamura, Y. & Ito, K. Making sense of mimic in translation termination. Trends Biochem. Sci. 28, 99–105 (2003).

    Article  CAS  Google Scholar 

  33. Ito, K., Ebihara, K., Uno, M. & Nakamura, Y. Conserved motifs of prokaryotic and eukaryotic polypeptide release factors: tRNA-protein mimicry hypothesis. Proc. Natl. Acad. Sci. USA 93, 5443–5448 (1996).

    Article  CAS  Google Scholar 

  34. Wilson, K.S. & Noller, H.F. Mapping the position of translational elongation factor EF-G in the ribosome by directed hydroxyl radical probing. Cell 92, 131–139 (1998).

    Article  CAS  Google Scholar 

  35. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  36. Terwilliger, T.C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D 55, 849–861 (1999).

    Article  CAS  Google Scholar 

  37. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  38. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  39. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  40. Wower, I.K., Zwieb, C.W., Guven, S.A. & Wower, J. Binding and cross-linking of tmRNA to ribosomal protein S1, on and off the Escherichia coli ribosome. EMBO J. 19, 6612–6621 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Shimizu (Japan Synchrotron Radiation Research Institute) for help with data collection using synchrotron radiation at beamline BL40B2. We are grateful to M. Ohara (Fukuoka) for helpful comments on the manuscript. This work was supported in part by a grant from the National Project on Protein Structural and Functional Analyses from the Japan Ministry of Education, Culture, Sports, Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Kimura.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Viable count. (PDF 53 kb)

Supplementary Fig. 2

Sequence comparison. (PDF 28 kb)

Supplementary Table 1

Major interactions. (PDF 20 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takagi, H., Kakuta, Y., Okada, T. et al. Crystal structure of archaeal toxin-antitoxin RelE–RelB complex with implications for toxin activity and antitoxin effects. Nat Struct Mol Biol 12, 327–331 (2005). https://doi.org/10.1038/nsmb911

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb911

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing