Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Essential Cavβ modulatory properties are AID-independent

Abstract

Voltage-gated Ca2+ channel β (Cavβ) subunits have a highly conserved core consisting of interacting Src homology 3 and guanylate kinase domains, and are postulated to exert their effects through AID, the major interaction site in the pore-forming α1 subunit. This stereotypical interaction does not explain how individual Cavβ subunits modulate α1 subunits differentially. Here we show that AID is neither necessary nor sufficient for critical Cavβ regulatory properties. Complete modulation depends on additional contacts that are exclusive of AID and not revealed in recent crystal structures. These data offer a new context for understanding Cavβ modulation, suggesting that the AID interaction orients the Cavβ core so as to permit additional isoform-specific Cavα1-Cavβ interactions that underlie the particular regulation seen with each Cavα1-Cavβ pair, rather than as the main site of regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of Cavα1 and β subunits.
Figure 2: The SH3 module contributes to Cavβ modulation.
Figure 3: The SH3 module binds to the α1 I-II intracellular linker.
Figure 4: Functionally important Cavβ modulation requires Cavα1-Cavβ contacts outside of the AID.
Figure 5: Deletion in the Cav1.2 I-II loop affects inactivation and blocks SH3 interaction.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Catterall, W.A. Structure and regulation of voltage-gated Ca2+ channels. Annu. Rev. Cell Dev. Biol. 16, 521–555 (2000).

    Article  CAS  Google Scholar 

  2. Dolphin, A.C. β subunits of voltage-gated calcium channels. J. Bioenerg. Biomembr. 35, 599–620 (2003).

    Article  CAS  Google Scholar 

  3. Pragnell, M. et al. Calcium channel β-subunit binds to a conserved motif in the I-II cytoplasmic linker of the α1-subunit. Nature 368, 67–70 (1994).

    Article  CAS  Google Scholar 

  4. Chen, Y.H. et al. Structural basis of the α1-β subunit interaction of voltage-gated Ca2+ channels. Nature 429, 675–680 (2004).

    Article  CAS  Google Scholar 

  5. Opatowsky, Y., Chen, C.C., Campbell, K.P. & Hirsch, J.A. Structural analysis of the voltage-dependent calcium channel β subunit functional core and its complex with the α1 interaction domain. Neuron 42, 387–399 (2004).

    Article  CAS  Google Scholar 

  6. Van Petegem, F., Clark, K.A., Chatelain, F.C. & Minor, D.L. Structure of a complex between a voltage-gated calcium channel β-subunit and an α-subunit domain. Nature 429, 671–675 (2004).

    Article  CAS  Google Scholar 

  7. McGee, A.W. et al. Calcium channel function regulated by the SH3-GK module in β subunits. Neuron 42, 89–99 (2004).

    Article  CAS  Google Scholar 

  8. Takahashi, S.X., Miriyala, J. & Colecraft, H.M. Membrane-associated guanylate kinase-like properties of β-subunits required for modulation of voltage-dependent Ca2+ channels. Proc. Natl. Acad. Sci. USA 101, 7193–7198 (2004).

    Article  CAS  Google Scholar 

  9. Gao, T., Chien, A.J. & Hosey, M.M. Complexes of the α 1C and β subunits generate the necessary signal for membrane targeting of class C L-type calcium channels. J. Biol. Chem. 274, 2137–2144 (1999).

    Article  CAS  Google Scholar 

  10. Opatowsky, Y., Chomsky-Hecht, O., Kang, M.-G., Campbell, K.P. & Hirsch, J.A. The voltage-dependent calcium channel β subunit contains two stable interacting domains. J. Biol. Chem. 278, 52323–52332 (2003).

    Article  CAS  Google Scholar 

  11. Bichet, D. et al. The I-II loop of the Ca2+ channel α1 subunit contains an endoplasmic reticulum retention signal antagonized by the β subunit. Neuron 25, 177–190 (2000).

    Article  CAS  Google Scholar 

  12. Paarmann, I., Spangenberg, O., Lavie, A. & Konrad, M. Formation of complexes between Ca2+-calmodulin and the synapse-associated protein sap97 requires the SH3 domain-guanylate kinase domain-connecting hook region. J. Biol. Chem. 277, 40832–40838 (2002).

    Article  CAS  Google Scholar 

  13. Masuko, N. et al. Interaction of NE-dlg/SAP102, a neuronal and endocrine tissue-specific membrane-associated guanylate kinase protein, with calmodulin and PSD-95/SAP90. A possible regulatory role in molecular clustering at synaptic sites. J. Biol. Chem. 274, 5782–5790 (1999).

    Article  CAS  Google Scholar 

  14. Pitt, G.S. et al. Molecular basis of calmodulin tethering and Ca2+-dependent inactivation of L-type Ca2+ channels. J. Biol. Chem. 276, 30794–30802. (2001).

    Article  CAS  Google Scholar 

  15. Restituito, S. et al. The β2a subunit is a molecular groom for the Ca2+ channel inactivation gate. J. Neurosci. 20, 9046–9052 (2000).

    Article  CAS  Google Scholar 

  16. Walker, D., Bichet, D., Campbell, K.P. & De Waard, M. A β4 isoform-specific interaction site in the carboxyl-terminal region of the voltage-dependent Ca2+ channel α1a subunit. J. Biol. Chem. 273, 2361–2367 (1998).

    Article  CAS  Google Scholar 

  17. Geib, S. et al. The interaction between the I-II loop and the III-IV loop of Cav2.1 contributes to voltage-dependent inactivation in a β-dependent manner. J. Biol. Chem. 277, 10003–10013 (2002).

    Article  CAS  Google Scholar 

  18. Sheng, M. & Sala, C. PDZ domains and the organization of supramolecular complexes. Annu. Rev. Neurosci. 24, 1–29 (2001).

    Article  CAS  Google Scholar 

  19. Brenman, J.E. et al. Localization of postsynaptic density-93 to dendritic microtubules and interaction with microtubule-associated protein 1A. J. Neurosci. 18, 8805–8813 (1998).

    Article  CAS  Google Scholar 

  20. Naisbitt, S. et al. Characterization of guanylate kinase-associated protein, a postsynaptic density protein at excitatory synapses that interacts directly with postsynaptic density-95/synapse-associated protein 90. J. Neurosci. 17, 5687–5696 (1997).

    Article  CAS  Google Scholar 

  21. Deguchi, M. et al. BEGAIN (brain-enriched guanylate kinase-associated protein), a novel neuronal PSD-95/SAP90-binding protein. J. Biol. Chem. 273, 26269–26272 (1998).

    Article  CAS  Google Scholar 

  22. Ghosh, S. & Lowenstein, J.M. A multifunctional vector system for heterologous expression of proteins in Escherichia coli. Expression of native and hexahistidyl fusion proteins, rapid purification of the fusion proteins, and removal of fusion peptide by KEX2 protease. Gene 176, 249–255 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Institutes of Health and the Irma T. Hirschl Trust (G.S.P.). We thank J. Riley and S. Siegelbaum for supplying Xenopus oocytes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey S Pitt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maltez, J., Nunziato, D., Kim, J. et al. Essential Cavβ modulatory properties are AID-independent. Nat Struct Mol Biol 12, 372–377 (2005). https://doi.org/10.1038/nsmb909

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb909

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing