Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dissection of COPII subunit-cargo assembly and disassembly kinetics during Sar1p-GTP hydrolysis

Abstract

COPII coat proteins are required for direct capture of cargo and SNARE proteins into transport vesicles from the endoplasmic reticulum (ER). Cargo and SNARE capture occurs during the formation of a 'prebudding complex' comprising a cargo, Sar1p-GTP and the COPII subunits Sec23/24p. The assembly and disassembly cycle of the prebudding complex on ER membranes is coupled to the Sar1p GTPase cycle. Using FRET to monitor a single round of Sec23/24p binding and dissociation from SNAREs in reconstituted liposomes, we show that Sec23/24p dissociates from v-SNARE and complexed t-SNARE with kinetics slower than Sar1p-GTP hydrolysis. Once Sec23/24p becomes associated with v-SNARE or complexed t-SNARE, the complex remains assembled during multiple rounds of Sar1p-GTP hydrolysis mediated by the GDP-GTP exchange factor Sec12p. These data suggest a model for the maintenance of kinetically stable prebudding complexes during the Sar1p GTPase cycle that regulates cargo sorting into transport vesicles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: FRET experimental design.
Figure 2: COPII vesicle formation from proteoliposomes.
Figure 3: FRET between reconstituted CFP-SNARE and YFP-Sec24/23p.
Figure 4: Sar1p-GTP hydrolysis and transient assembly of the prebudding complex as monitored by FRET.
Figure 5: Correlation between dissociation of prebudding complex and Sar1p-GTP hydrolysis on protein-free liposomes.
Figure 6: The presence of Sec12p prevents dissociation of prebudding complex.
Figure 7: Coat exchange on SNAREs during the Sar1p GTPase cycle.

Similar content being viewed by others

References

  1. Bonifacino, J.S. & Glick, B.S. The mechanisms of vesicle budding and fusion. Cell 116, 153–166 (2004).

    Article  CAS  Google Scholar 

  2. Jahn, R., Lang, T. & Sudhof, T.C. Membrane fusion. Cell 112, 519–533 (2003).

    Article  CAS  Google Scholar 

  3. Newman, A.P., Shim, J. & Ferro-Novick, S. BET1, BOS1, and SEC22 are members of a group of interacting yeast genes required for transport from the endoplasmic reticulum to the Golgi complex. Mol. Cell. Biol. 10, 3405–3414 (1990).

    Article  CAS  Google Scholar 

  4. Hardwick, K.G. & Pelham, H.R. SED5 encodes a 39-kD integral membrane protein required for vesicular transport between the ER and the Golgi complex. J. Cell Biol. 119, 513–521 (1992).

    Article  CAS  Google Scholar 

  5. Cao, X. & Barlowe, C. Asymmetric requirements for a Rab GTPase and SNARE proteins in fusion of COPII vesicles with acceptor membranes. J. Cell Biol. 149, 55–66 (2000).

    Article  CAS  Google Scholar 

  6. Parlati, F. et al. Topological restriction of SNARE-dependent membrane fusion. Nature 407, 194–198 (2000).

    Article  CAS  Google Scholar 

  7. Barlowe, C. et al. COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell 77, 895–907 (1994).

    Article  CAS  Google Scholar 

  8. Nakano, A. & Muramatsu, M. A novel GTP-binding protein, Sar1p, is involved in transport from the endoplasmic reticulum to the Golgi apparatus. J. Cell Biol. 109, 2677–2691 (1989).

    Article  CAS  Google Scholar 

  9. Barlowe, C. & Schekman, R. SEC12 encodes a guanine-nucleotide-exchange factor essential for transport vesicle budding from the ER. Nature 365, 347–349 (1993).

    Article  CAS  Google Scholar 

  10. Nishikawa, S. & Nakano, A. Identification of a gene required for membrane protein retention in the early secretory pathway. Proc. Natl. Acad. Sci. USA 90, 8179–8183 (1993).

    Article  CAS  Google Scholar 

  11. Sato, M., Sato, K. & Nakano, A. Endoplasmic reticulum localization of Sec12p is achieved by two mechanisms: Rer1p-dependent retrieval that requires the transmembrane domain and Rer1p-independent retention that involves the cytoplasmic domain. J. Cell Biol. 134, 279–293 (1996).

    Article  CAS  Google Scholar 

  12. Bi, X., Corpina, R.A. & Goldberg, J. Structure of the Sec23/24–Sar1 pre-budding complex of the COPII vesicle coat. Nature 419, 271–277 (2002).

    Article  CAS  Google Scholar 

  13. Mossessova, E., Bickford, L.C. & Goldberg, J. SNARE selectivity of the COPII coat. Cell 114, 483–495 (2003).

    Article  CAS  Google Scholar 

  14. Miller, E.A. et al. Multiple cargo binding sites on the COPII subunit Sec24p ensure capture of diverse membrane proteins into transport vesicles. Cell 114, 497–509 (2003).

    Article  CAS  Google Scholar 

  15. Kuehn, M.J., Herrmann, J.M. & Schekman, R. COPII-cargo interactions direct protein sorting into ER-derived transport vesicles. Nature 391, 187–190 (1998).

    Article  CAS  Google Scholar 

  16. Antonny, B. & Schekman, R. ER export: public transportation by the COPII coach. Curr. Opin. Cell Biol. 13, 438–443 (2001).

    Article  CAS  Google Scholar 

  17. Antonny, B., Madden, D., Hamamoto, S., Orci, L. & Schekman, R. Dynamics of the COPII coat with GTP and stable analogues. Nat. Cell Biol. 3, 531–537 (2001).

    Article  CAS  Google Scholar 

  18. Yoshihisa, T., Barlowe, C. & Schekman, R. Requirement for a GTPase-activating protein in vesicle budding from the endoplasmic reticulum. Science 259, 1466–1468 (1993).

    Article  CAS  Google Scholar 

  19. Sato, K. & Nakano, A. Reconstitution of coat protein complex II (COPII) vesicle formation from cargo-reconstituted proteoliposomes reveals the potential role of GTP hydrolysis by Sar1p in protein sorting. J. Biol. Chem. 279, 1330–1335 (2004).

    Article  CAS  Google Scholar 

  20. Springer, S. & Schekman, R. Nucleation of COPII vesicular coat complex by endoplasmic reticulum to Golgi vesicle SNAREs. Science 281, 698–700 (1998).

    Article  CAS  Google Scholar 

  21. Matsuoka, K. et al. COPII-coated vesicle formation reconstituted with purified coat proteins and chemically defined liposomes. Cell 93, 263–275 (1998).

    Article  CAS  Google Scholar 

  22. Doms, R.W., Keller, D.S., Helenius, A. & Balch, W.E. Role for adenosine triphosphate in regulating the assembly and transport of vesicular stomatitis virus G protein trimers. J. Cell Biol. 105, 1957–1969 (1987).

    Article  CAS  Google Scholar 

  23. Emery, G., Rojo, M. & Gruenberg, J. Coupled transport of p24 family members. J. Cell Sci. 113, 2507–2516 (2000).

    CAS  PubMed  Google Scholar 

  24. Otte, S. & Barlowe, C. The Erv41p–Erv46p complex: multiple export signals are required in trans for COPII-dependent transport from the ER. EMBO J. 21, 6095–6104 (2002).

    Article  CAS  Google Scholar 

  25. Nufer, O., Kappeler, F., Guldbrandsen, S. & Hauri, H.P. ER export of ERGIC-53 is controlled by cooperation of targeting determinants in all three of its domains. J. Cell Sci. 116, 4429–4440 (2003).

    Article  CAS  Google Scholar 

  26. Sato, K. & Nakano, A. Oligomerization of a cargo receptor directs protein sorting into COPII-coated transport vesicles. Mol. Biol. Cell 14, 3055–3063 (2003).

    Article  CAS  Google Scholar 

  27. Presley, J.F. et al. Dissection of COPI and Arf1 dynamics in vivo and role in Golgi membrane transport. Nature 417, 187–193 (2002).

    Article  CAS  Google Scholar 

  28. Goldberg, J. Decoding of sorting signals by coatomer through a GTPase switch in the COPI coat complex. Cell 100, 671–679 (2000).

    Article  CAS  Google Scholar 

  29. Bigay, J., Gounon, P., Robineau, S. & Antonny, B. Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature. Nature 426, 563–566 (2003).

    Article  CAS  Google Scholar 

  30. Saito, Y., Kimura, K., Oka, T. & Nakano, A. Activities of mutant Sar1 proteins in guanine nucleotide binding, GTP hydrolysis, and cell-free transport from the endoplasmic reticulum to the Golgi apparatus. J. Biochem. 124, 816–823 (1998).

    Article  CAS  Google Scholar 

  31. Matsuoka, K. & Schekman, R. The use of liposomes to study COPII- and COPI-coated vesicle formation and membrane protein sorting. Methods 20, 417–428 (2000).

    Article  CAS  Google Scholar 

  32. Umebayashi, K. & Nakano, A. Ergosterol is required for targeting of tryptophan permease to the yeast plasma membrane. J. Cell Biol. 161, 1117–1131 (2003).

    Article  CAS  Google Scholar 

  33. Miller, C. & Racker, E. Fusion of phospholipid vesicles reconstituted with cytochrome c oxidase and mitochondrial hydrophobic protein. J. Membr. Biol. 26, 319–333 (1976).

    Article  CAS  Google Scholar 

  34. Sato, K. & Nakano, A. Emp47p and its close homolog Emp46p have a tyrosine-containing endoplasmic reticulum exit signal and function in glycoprotein secretion in Saccharomyces cerevisiae. Mol. Biol. Cell 13, 2518–2532 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by PRESTO, Japan Science and Technology Agency, by grants-in-aid from the Ministry of Education, Science, Sports and Culture of Japan, and by a fund from the Bioarchitect Research Project of RIKEN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Sato.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

FRET between reconstituted MBP-CFP-Ufe1p and YFP-Sec24/23p. (PDF 414 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, K., Nakano, A. Dissection of COPII subunit-cargo assembly and disassembly kinetics during Sar1p-GTP hydrolysis. Nat Struct Mol Biol 12, 167–174 (2005). https://doi.org/10.1038/nsmb893

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb893

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing