Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The dynamic response of upstream DNA to transcription-generated torsional stress

Abstract

The torsional stress caused by counter-rotation of the transcription machinery and template generates supercoils in a closed topological domain, but has been presumed to be too short-lived to be significant in an open domain. This report shows that transcribing RNA polymerases dynamically sustain sufficient torsion to perturb DNA structure even on linear templates. Assays to capture and measure transcriptionally generated torque and to trap short-lived perturbations in DNA structure and conformation showed that the transient forces upstream of active promoters are large enough to drive the supercoil-sensitive far upstream element (FUSE) of the human c-myc into single-stranded DNA. An alternative non-B conformation of FUSE found in stably supercoiled DNA is not accessible dynamically. These results demonstrate that dynamic disturbance of DNA structure provides a real-time measure of ongoing genetic activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: High-resolution mapping of supercoil-dependent chemical modification within the FUSE.
Figure 2: Two-dimensional agarose gel analysis of supercoil-dependent DNA structural transitions in +FUSE and −FUSE midi-circles.
Figure 3: FUSE melting as a torsional strain gauge.
Figure 4: An experimental approach to capture and measure dynamic DNA supercoiling during transcription.
Figure 5: Transcription from a single promoter supports supercoiling of upstream DNA.
Figure 6: Influence of the transcription rate on the intensity of supercoiling and FUSE melting.
Figure 7: Binding of FBP to minicircle topoisomers.
Figure 8: FUSE, FBP and real-time regulation of transcription.

Similar content being viewed by others

References

  1. Liu, L.F. & Wang, J.C. Supercoiling of the DNA-template during transcription. Proc. Natl. Acad. Sci. USA 84, 7024–7027 (1987).

    Article  CAS  Google Scholar 

  2. Harada, Y. et al. Direct observation of DNA rotation during transcription by Escherichia coli RNA polymerase. Nature 409, 113–115 (2001).

    Article  CAS  Google Scholar 

  3. Sinden, R.R. DNA Structure and Function (Academic Press, San Diego, 1994).

    Google Scholar 

  4. Bates, A.D. & Maxwell, A. DNA Topology (IRL Press at Oxford Univ. Press, New York, 1993).

    Google Scholar 

  5. Collins, I., Weber, A. & Levens, D. Transcriptional consequences of topoisomerase inhibition. Mol. Cell. Biol. 21, 8437–8451 (2001).

    Article  CAS  Google Scholar 

  6. Tomonaga, T. et al. Unrestraining genetic processes with a protein-DNA hinge. Mol. Cell 1, 759–764 (1998).

    Article  CAS  Google Scholar 

  7. Havas, K. et al. Generation of superhelical torsion by ATP-dependent chromatin remodeling activities. Cell 103, 1133–1142 (2000).

    Article  CAS  Google Scholar 

  8. Cozzarelli, N.R. & Wang, J.C. DNA Topology and Its Biological Effects (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1990).

    Google Scholar 

  9. Nelson, P. Transport of torsional stress in DNA. Proc. Natl. Acad. Sci. USA 96, 14342–14347 (1999).

    Article  CAS  Google Scholar 

  10. Marko, J.F. DNA under high tension: overstretching, undertwisting, and relaxation dynamics. Phys. Rev. E 57, 2134–2149 (1998).

    Article  CAS  Google Scholar 

  11. Droge, P. Transcription-driven site-specific DNA recombination in vitro. Proc. Natl. Acad. Sci. USA 90, 2759–2763 (1993).

    Article  CAS  Google Scholar 

  12. Wang, Z.Y. & Droge, P. Long-range effects in a supercoiled DNA domain generated by transcription in vitro. J. Mol. Biol. 271, 499–510 (1997).

    Article  CAS  Google Scholar 

  13. Ostrander, E.A., Benedetti, P. & Wang, J.C. Template supercoiling by a chimera of yeast Gal4 protein and phage-T7 RNA-polymerase. Science 249, 1261–1265 (1990).

    Article  CAS  Google Scholar 

  14. He, L. et al. Loss of FBP function arrests cellular proliferation and extinguishes c-myc expression. EMBO J. 19, 1034–1044 (2000).

    Article  CAS  Google Scholar 

  15. Duncan, R. et al. Sequence-specific, single-strand binding-protein activates the far upstream element of c-myc and defines a new DNA-binding motif. Genes Dev. 8, 465–480 (1994).

    Article  CAS  Google Scholar 

  16. Michelotti, G.A. et al. Multiple single-stranded cis elements are associated with activated chromatin of the human c-myc gene in vivo . Mol. Cell. Biol. 16, 2656–2669 (1996).

    Article  CAS  Google Scholar 

  17. Liu, J., et al. Defective interplay of activators and repressors with TFIIH in xeroderma pigmentosum. Cell 104, 353–363 (2001).

    Article  CAS  Google Scholar 

  18. Sassedwight, S. & Gralla, J.D. KMnO4 as a probe for lac promoter DNA melting and mechanism in vivo . J. Biol. Chem. 264, 8074–8081 (1989).

    CAS  Google Scholar 

  19. Blaszak, R.T., Potaman, V., Sinden, R.R. & Bissler, J.J. DNA structural transitions within the PKD1 gene. Nucleic Acids Res. 27, 2610–2617 (1999).

    Article  CAS  Google Scholar 

  20. Potaman, V.N. et al. Length-dependent structure formation in Friedreich ataxia (GAA)n*(TTC)n repeats at neutral pH. Nucleic Acids Res. 32, 1224–1231 (2004).

    Article  CAS  Google Scholar 

  21. Dai, X., Greizerstein, M.B., Nadas-Chinni, K. & Rothman-Denes, L.B. Supercoil-induced extrusion of a regulatory DNA hairpin. Proc. Natl. Acad. Sci. USA 94, 2174–2179 (1997).

    Article  CAS  Google Scholar 

  22. Dai, X., Kloster, M. & Rothman-Denes, L.B. Sequence-dependent extrusion of a small DNA hairpin at the N4 virion RNA polymerase promoters. J. Mol. Biol. 283, 43–58. (1998).

    Article  CAS  Google Scholar 

  23. Peck, L.J. & Wang, J.C. Energetics of B-to-Z transition in DNA. Proc. Natl. Acad. Sci. USA 80, 6206–6210 (1983).

    Article  CAS  Google Scholar 

  24. Kowalski, D., Natale, D.A. & Eddy, M.J. Stable DNA unwinding, not breathing, accounts for single-strand-specific nuclease hypersensitivity of specific A+T-rich sequences. Proc. Natl. Acad. Sci. USA 85, 9464–9468 (1988).

    Article  CAS  Google Scholar 

  25. Potaman, V.N. et al. Unpaired structures in SCA10 (ATTCT)(n).(AGAAT)(n) repeats. J. Mol. Biol. 326, 1095–1111 (2003).

    Article  CAS  Google Scholar 

  26. Kang, S., Wohlrab, F. & Wells, R.D. GC-rich flanking tracts decrease the kinetics of intramolecular DNA triplex formation. J. Biol. Chem. 267, 19435–19442 (1992).

    CAS  PubMed  Google Scholar 

  27. Hanvey, J.C., Shimizu, M. & Wells, R.D. Intramolecular DNA triplexes in supercoiled plasmids. II. Effect of base composition and noncentral interruptions on formation and stability. J. Biol. Chem. 264, 5950–5956 (1989).

    CAS  PubMed  Google Scholar 

  28. Abremski, K., Hoess, R. & Sternberg, N. Studies on the properties of P1 site-specific recombination—evidence for topologically unlinked products following recombination. Cell 32, 1301–1311 (1983).

    Article  CAS  Google Scholar 

  29. Abremski, K., Frommer, B. & Hoess, R.H. linking-number changes in the DNA substrate during Cre-mediated loxP site-specific recombination. J. Mol. Biol. 192, 17–26 (1986).

    Article  CAS  Google Scholar 

  30. Adachi, N. & Lieber, M.R. Bidirectional gene organization: a common architectural feature of the human genome. Cell 109, 807–809 (2002).

    Article  CAS  Google Scholar 

  31. Takai, D. & Jones, P.A. Origins of bidirectional promoters: computational analyses of intergenic distance in the human genome. Mol. Biol. Evol. 21, 463–467 (2004).

    Article  CAS  Google Scholar 

  32. Liu, J. et al. The FBP interacting repressor targets TFIIH to inhibit activated transcription. Mol. Cell 5, 331–341 (2000).

    Article  CAS  Google Scholar 

  33. van Holde, K. & Zlatanova, J. Unusual DNA structures, chromatin and transcription. Bioessays 16, 59–68 (1994).

    Article  CAS  Google Scholar 

  34. Krasilnikov, A.S., Podtelezhnikov, A., Vologodskii, A. & Mirkin, S.M. Large-scale effects of transcriptional DNA supercoiling in vivo . J. Mol. Biol. 292, 1149–1160 (1999).

    Article  CAS  Google Scholar 

  35. Leng, F. & McMacken, R. Potent stimulation of transcription-coupled DNA supercoiling by sequence-specific DNA-binding proteins. Proc. Natl. Acad. Sci. USA 99, 9139–9144 (2002).

    Article  CAS  Google Scholar 

  36. Bennink, M.L. et al. Unfolding individual nucleosomes by stretching single chromatin fibers with optical tweezers. Nat. Struct. Biol. 8, 606–610 (2001).

    Article  CAS  Google Scholar 

  37. Brower-Toland, B.D. et al. Mechanical disruption of individual nucleosomes reveals a reversible multistage release of DNA. Proc. Natl. Acad. Sci. USA 99, 1960–1965 (2002).

    Article  CAS  Google Scholar 

  38. Epshtein, V., Toulme, F., Rahmouni, A.R., Borukhov, S. & Nudler, E. Transcription through the roadblocks: the role of RNA polymerase cooperation. EMBO J. 22, 4719–4727 (2003).

    Article  CAS  Google Scholar 

  39. Rhee, K.Y. et al. Transcriptional coupling between the divergent promoters of a prototypic LysR-type regulatory system, the ilvYC operon of Escherichia coli . Proc. Natl. Acad. Sci. USA 96, 14294–14299 (1999).

    Article  CAS  Google Scholar 

  40. Cawley, S. et al. Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell 116, 499–509 (2004).

    Article  CAS  Google Scholar 

  41. Ohba, R., Matsumoto, K. & Ishimi, Y. Induction of DNA replication by transcription in the region upstream of the human c-myc gene in a model replication system. Mol. Cell. Biol. 16, 5754–5763 (1996).

    Article  CAS  Google Scholar 

  42. Benham, C.J. Sites of predicted stress-induced DNA duplex destabilization occur preferentially at regulatory loci. Proc. Natl. Acad. Sci. USA 90, 2999–3003 (1993).

    Article  CAS  Google Scholar 

  43. Sheflin, L.G. & Kowalski, D. Altered DNA conformations detected by mung bean nuclease occur in promoter and terminator regions of supercoiled PBR322 DNA. Nucleic Acids Res. 13, 6137–6154 (1985).

    Article  CAS  Google Scholar 

  44. Singleton, C.K. & Wells, R.D. The facile generation of covalently closed, circular DNAs with defined negative superhelical densities. Anal. Biochem. 122, 253–257 (1982).

    Article  CAS  Google Scholar 

  45. Keller, W. Determination of the number of superhelical turns in simian virus 40 DNA by gel electrophoresis. Proc. Natl. Acad. Sci. USA 72, 4876–4880 (1975).

    Article  CAS  Google Scholar 

  46. Rhodes, D. & Klug, A. Helical periodicity of DNA determined by enzyme digestion. Nature 286, 573–578 (1980).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Liotta, D. Clark, D. Boles and L. Benjamin for critical comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Levens.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Effect of transcription on KMnO4 reactivity at the FUSE element. (PDF 46 kb)

Supplementary Fig. 2

Influence of the viscosity of the reaction media, and nascent transcript length on the intensity of dynamic supercoiling. (PDF 43 kb)

Supplementary Fig. 3

Evanescent nature of the transcriptionally generated stress. (PDF 48 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kouzine, F., Liu, J., Sanford, S. et al. The dynamic response of upstream DNA to transcription-generated torsional stress. Nat Struct Mol Biol 11, 1092–1100 (2004). https://doi.org/10.1038/nsmb848

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb848

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing