Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification, function and structure of the mycobacterial sulfotransferase that initiates sulfolipid-1 biosynthesis

Abstract

Sulfolipid-1 (SL-1) is an abundant sulfated glycolipid and potential virulence factor found in Mycobacterium tuberculosis. SL-1 consists of a trehalose-2-sulfate (T2S) disaccharide elaborated with four lipids. We identified and characterized a conserved mycobacterial sulfotransferase, Stf0, which generates the T2S moiety of SL-1. Biochemical studies demonstrated that the enzyme requires unmodified trehalose as substrate and is sensitive to small structural perturbations of the disaccharide. Disruption of stf0 in Mycobacterium smegmatis and M. tuberculosis resulted in the loss of T2S and SL-1 formation, respectively. The structure of Stf0 at a resolution of 2.6 Å reveals the molecular basis of trehalose recognition and a unique dimer configuration that encloses the substrate into a bipartite active site. These data provide strong evidence that Stf0 carries out the first committed step in the biosynthesis of SL-1 and establish a system for probing the role of SL-1 in M. tuberculosis infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of sulfolipid-1 and trehalose-2-sulfate.
Figure 2: Stf0 is the mycobacterial T2S sulfotransferase.
Figure 3: Sulfation of trehalose is required to initiate SL-1 biosynthesis.
Figure 4: Overall fold and dimer of Stf0.
Figure 5: Interactions between trehalose and Stf0.
Figure 6: Proposed biosynthesis of sulfolipid-1.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Mougous, J.D., Green, R.E., Williams, S.J., Brenner, S.E. & Bertozzi, C.R. Sulfotransferases and sulfatases in mycobacteria. Chem. Biol. 9, 767–776 (2002).

    Article  CAS  Google Scholar 

  2. Hemmerich, S. & Rosen, S.D. Carbohydrate sulfotransferases in lymphocyte homing. Glycobiology 10, 849–856 (2000).

    Article  CAS  Google Scholar 

  3. Honke, K. & Taniguchi, N. Sulfotransferases and sulfated oligosaccharides. Med. Res. Rev. 22, 637–654 (2002).

    Article  CAS  Google Scholar 

  4. Moore, K.L. The biology and enzymology of protein tyrosine O-sulfation. J. Biol. Chem. 278, 24243–24246 (2003).

    Article  CAS  Google Scholar 

  5. Coughtrie, M.W. Sulfation through the looking glass—recent advances in sulfotransferase research for the curious. Pharmacogenomics J. 2, 297–308 (2002).

    Article  CAS  Google Scholar 

  6. Hemmerich, S., Butcher, E.C. & Rosen, S.D. Sulfation-dependent recognition of high endothelial venules (HEV)-ligands by L-selectin and MECA-79, and adhesion-blocking monoclonal antibody. J. Exp. Med. 180, 2219–2226 (1994).

    Article  CAS  Google Scholar 

  7. Hemmerich, S. et al. Sulfation of L-selectin ligands by an HEV-restricted sulfotransferase regulates lymphocyte homing to lymph nodes. Immunity 15, 237–247 (2001).

    Article  CAS  Google Scholar 

  8. Farzan, M. et al. Tyrosine sulfation of the amino terminus of CCR5 facilitates HIV-1 entry. Cell 96, 667–676 (1999).

    Article  CAS  Google Scholar 

  9. Choe, H. et al. Tyrosine sulfation of human antibodies contributes to recognition of the CCR5 binding region of HIV-1 gp120. Cell 114, 161–170 (2003).

    Article  CAS  Google Scholar 

  10. Fiete, D., Srivastava, V., Hindsgaul, O. & Baenziger, J.U. A hepatic reticuloendothelial cell receptor specific for SO4-4GalNAcβ 1,4GlcNAcβ 1,2Manα that mediates rapid clearance of lutropin. Cell 67, 1103–1110 (1991).

    Article  CAS  Google Scholar 

  11. Hanin, M. et al. Sulphation of Rhizobium sp. NGR234 Nod factors is dependent on noeE, a new host-specificity gene. Mol. Microbiol. 24, 1119–1129 (1997).

    Article  CAS  Google Scholar 

  12. Roche, P. et al. Molecular basis of symbiotic host specificity in Rhizobium meliloti: nodH and nodPQ genes encode the sulfation of lipo-oligosaccharide signals. Cell 67, 1131–1143 (1991).

    Article  CAS  Google Scholar 

  13. Shen, Y., Sharma, P., da Silva, F.G. & Ronald, P. The Xanthomonas oryzae pv. lozengeoryzae raxP and raxQ genes encode an ATP sulphurylase and adenosine-5′-phosphosulphate kinase that are required for AvrXa21 avirulence activity. Mol. Microbiol. 44, 37–48 (2002).

    Article  CAS  Google Scholar 

  14. Mougous, J.D. et al. Discovery of sulfated metabolites in mycobacteria with a genetic and mass spectrometric approach. Proc. Natl. Acad. Sci. USA 99, 17037–17042 (2002).

    Article  CAS  Google Scholar 

  15. McCarthy, C. Synthesis and release of sulfolipid by Mycobacterium avium during growth and cell division. Infect. Immun. 14, 1241–1252 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Khoo, K.H. et al. Altered expression profile of the surface glycopeptidolipids in drug- resistant clinical isolates of Mycobacterium avium complex. J. Biol. Chem. 274, 9778–9785 (1999).

    Article  CAS  Google Scholar 

  17. Lopez Marin, L.M. et al. Structure of a novel sulfate-containing mycobacterial glycolipid. Biochemistry 31, 11106–11111 (1992).

    Article  CAS  Google Scholar 

  18. Goren, M.B., Brokl, O. & Schaefer, W.B. Lipids of putative relevance to virulence in Mycobacterium tuberculosis: correlation of virulence with elaboration of sulfatides and strongly acidic lipids. Infect. Immun. 9, 142–149 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Goren, M.B. Sulfolipid I of Mycobacterium tuberculosis, strain H37Rv. I. Purification and properties. Biochim. Biophys. Acta 210, 116–126 (1970).

    Article  CAS  Google Scholar 

  20. Daffe, M. & Draper, P. The envelope layers of mycobacteria with reference to their pathogenicity. Adv. Microb. Physiol. 39, 131–203 (1998).

    Article  CAS  Google Scholar 

  21. Zhang, L., English, D. & Andersen, B.R. Activation of human neutrophils by Mycobacterium tuberculosis-derived sulfolipid-1. J. Immunol. 146, 2730–2736 (1991).

    CAS  PubMed  Google Scholar 

  22. Zhang, L., Gay, J.C., English, D. & Andersen, B.R. Neutrophil priming mechanisms of sulfolipid-I and N-formyl-methionyl-leucyl-phenylalanine. J. Biomed. Sci. 1, 253–262 (1994).

    CAS  PubMed  Google Scholar 

  23. Zhang, L., Goren, M.B., Holzer, T.J. & Andersen, B.R. Effect of Mycobacterium tuberculosis-derived sulfolipid I on human phagocytic cells. Infect. Immun. 56, 2876–2883 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Julian, E. et al. Serodiagnosis of tuberculosis: comparison of immunoglobulin A (IgA) response to sulfolipid I with IgG and IgM responses to 2,3-diacyltrehalose, 2,3,6-triacyltrehalose, and cord factor antigens. J. Clin. Microbiol. 40, 3782–3788 (2002).

    Article  CAS  Google Scholar 

  25. Julian, E., Matas, L., Alcaide, J. & Luquin, M. Comparison of antibody responses to a potential combination of specific glycolipids and proteins for test sensitivity improvement in tuberculosis serodiagnosis. Clin. Diagn. Lab. Immunol. 11, 70–76 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Converse, S.E. et al. MmpL8 is required for sulfolipid-1 biosynthesis and Mycobacterium tuberculosis virulence. Proc. Natl. Acad. Sci. USA 100, 6121–6126 (2003).

    Article  CAS  Google Scholar 

  27. Gilleron, M. et al. Diacylated sulfoglycolipids are novel mycobacterial antigens stimulating CD1-restricted T cells during infection with Mycobacterium tuberculosis. J. Exp. Med. 199, 649–659 (2004).

    Article  CAS  Google Scholar 

  28. Sirakova, T.D., Thirumala, A.K., Dubey, V.S., Sprecher, H. & Kolattukudy, P.E. The Mycobacterium tuberculosis pks2 gene encodes the synthase for the hepta- and octamethyl-branched fatty acids required for sulfolipid synthesis. J. Biol. Chem. 276, 16833–16839 (2001).

    Article  CAS  Google Scholar 

  29. Domenech, P. et al. The role of MmpL8 in sulfatide biogensis and virulence of Mycobacterium tuberculosis. J. Biol. Chem. 279, 21257–21265 (2004).

    Article  CAS  Google Scholar 

  30. Rousseau, C. et al. Sulfolipid deficiency does not affect the virulence of Mycobacterium tuberculosis H37Rv in mice and guinea pigs. Infect. Immun. 71, 4684–4690 (2003).

    Article  CAS  Google Scholar 

  31. Cronan, G.E. & Keating, D.H. Sinorhizobium meliloti sulfotransferase that modifies lipopolysaccharide. J. Bacteriol. 186, 4168–4176 (2004).

    Article  CAS  Google Scholar 

  32. Cole, S.T. et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544 (1998).

    Article  CAS  Google Scholar 

  33. Kakuta, Y., Pedersen, L.G., Pedersen, L.C. & Negishi, M. Conserved structural motifs in the sulfotransferase family. Trends Biochem. Sci. 23, 129–130 (1998).

    Article  CAS  Google Scholar 

  34. Elbein, A.D. & Mitchell, M. Levels of glycogen and trehalose in Mycobacterium smegmatis and the purification and properties of the glycogen synthetase. J. Bacteriol. 113, 863–873 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Petzold, C.J., Leavell, M.D. & Leary, J.A. Screening and identification of acidic carbohydrates in bovine colostrum by using ion/molecule reactions and Fourier transform ion cyclotron resonance mass spectrometry: specificity toward phosphorylated complexes. Anal. Chem. 76, 203–210 (2004).

    Article  CAS  Google Scholar 

  36. Negishi, M. et al. Structure and function of sulfotransferases. Arch. Biochem. Biophys. 390, 149–157 (2001).

    Article  CAS  Google Scholar 

  37. Edavettal, S.C. et al. Crystal structure and mutational analysis of heparan sulfate 3-O-sulfotransferase isoform 1. J. Biol. Chem. 279, 25789–25797 (2004).

    Article  CAS  Google Scholar 

  38. Kakuta, Y., Sueyoshi, T., Negishi, M. & Pedersen, L.C. Crystal structure of the sulfotransferase domain of human heparan sulfate N-deacetylase/ N-sulfotransferase 1. J. Biol. Chem. 274, 10673–10676 (1999).

    Article  CAS  Google Scholar 

  39. Kakuta, Y., Pedersen, L.G., Carter, C.W., Negishi, M. & Pedersen, L.C. Crystal structure of estrogen sulphotransferase. Nat. Struct. Biol. 4, 904–908 (1997).

    Article  CAS  Google Scholar 

  40. Petrotchenko, E.V., Pedersen, L.C., Borchers, C.H., Tomer, K.B. & Negishi, M. The dimerization motif of cytosolic sulfotransferases. FEBS Lett. 490, 39–43 (2001).

    Article  CAS  Google Scholar 

  41. Goodsell, D.S. & Olson, A.J. Structural symmetry and protein function. Annu. Rev. Biophys. Biomol. Struct. 29, 105–153 (2000).

    Article  CAS  Google Scholar 

  42. Chapman, E., Bryan, M.C. & Wong, C.H. Mechanistic studies of β-arylsulfotransferase IV. Proc. Natl. Acad. Sci. USA 100, 910–5 (2003).

    Article  CAS  Google Scholar 

  43. Kakuta, Y., Petrotchenko, E.V., Pedersen, L.C. & Negishi, M. The sulfuryl transfer mechanism. Crystal structure of a vanadate complex of estrogen sulfotransferase and mutational analysis. J. Biol. Chem. 273, 27325–27330 (1998).

    Article  CAS  Google Scholar 

  44. Chapman, E., Bryan, M.C. & Wong, C.H. Mechanistic studies of β-arylsulfotransferase IV. Proc. Natl. Acad. Sci. USA 100, 910–915 (2003).

    Article  CAS  Google Scholar 

  45. Pedersen, L.C., Petrotchenko, E., Shevtsov, S. & Negishi, M. Crystal structure of the human estrogen sulfotransferase-PAPS complex: evidence for catalytic role of Ser137 in the sulfuryl transfer reaction. J. Biol. Chem. 277, 17928–17932 (2002).

    Article  CAS  Google Scholar 

  46. Rini, J.M. Lectin structure. Annu. Rev. Biophys. Biomol. Struct. 24, 551–577 (1995).

    Article  CAS  Google Scholar 

  47. Elbein, A.D., Pan, Y.T., Pastuszak, I. & Carroll, D. New insights on trehalose: a multifunctional molecule. Glycobiology 13, 17R–27R (2003).

    Article  CAS  Google Scholar 

  48. Wolf, A., Kramer, R. & Morbach, S. Three pathways for trehalose metabolism in Corynebacterium glutamicum ATCC13032 and their significance in response to osmotic stress. Mol. Microbiol. 49, 1119–1134 (2003).

    Article  CAS  Google Scholar 

  49. Gibson, R.P., Turkenburg, J.P., Charnock, S.J., Lloyd, R. & Davies, G.J. Insights into trehalose synthesis provided by the structure of the retaining glucosyltransferase OtsA. Chem. Biol. 9, 1337–1346 (2002).

    Article  CAS  Google Scholar 

  50. Ronning, D.R. et al. Crystal structure of the secreted form of antigen 85C reveals potential targets for mycobacterial drugs and vaccines. Nat. Struct. Biol. 7, 141–146 (2000).

    Article  CAS  Google Scholar 

  51. Armstrong, J.I. et al. A library approach to the generation of bisubstrate analogue sulfotransferase inhibitors. Org. Lett. 3, 2657–2660 (2001).

    Article  CAS  Google Scholar 

  52. Verdugo, D.E. et al. Discovery of estrogen sulfotransferase inhibitors from a purine library screen. J. Med. Chem. 44, 2683–2686 (2001).

    Article  CAS  Google Scholar 

  53. Snapper, S.B., Melton, R.E., Mustafa, S., Kieser, T. & Jacobs, W.R. Jr. Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Mol. Microbiol. 4, 1911–1919 (1990).

    Article  CAS  Google Scholar 

  54. Parish, T. & Stoker, N.G. Use of a flexible cassette method to generate a double unmarked Mycobacterium tuberculosis tlyA plcABC mutant by gene replacement. Microbiology 146, 1969–1975 (2000).

    Article  CAS  Google Scholar 

  55. Kaps, I. et al. Energy transfer between fluorescent proteins using a co-expression system in Mycobacterium smegmatis. Gene 278, 115–124 (2001).

    Article  CAS  Google Scholar 

  56. Harth, G. & Horwitz, M.A. Expression and efficient export of enzymatically active Mycobacterium tuberculosis glutamine synthetase in Mycobacterium smegmatis and evidence that the information for export is contained within the protein. J. Biol. Chem. 272, 22728–22735 (1997).

    Article  CAS  Google Scholar 

  57. Van Duyne, G.D., Standaert, R.F., Karplus, P.A., Schreiber, S.L. & Clardy, J. Atomic structures of the human immunophilin FKBP-12 complexes with FK506 and rapamycin. J. Mol. Biol. 229, 105–124 (1993).

    Article  CAS  Google Scholar 

  58. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Macromol. Crystallogr. A 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  59. Terwilliger, T.C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D 55, 849–861 (1999).

    Article  CAS  Google Scholar 

  60. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  61. Holton, J. & Alber, T. Automated protein crystal structure determination using ELVES. Proc. Natl. Acad. Sci. USA 101, 1537–1542 (2004).

    Article  CAS  Google Scholar 

  62. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron-density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  63. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  64. Winn, M.D., Isupov, M.N. & Murshudov, G.N. Use of TLS parameters to model anisotropic displacements in macromolecular refinement. Acta Crystallogr. D 57, 122–133 (2001).

    Article  CAS  Google Scholar 

  65. Lamzin, V.S. & Wilson, K.S. Automated refinement of protein models. Acta Crystallogr. D 49, 129–147 (1993).

    Article  CAS  Google Scholar 

  66. Ehrhardt, D.W. et al. In vitro sulfotransferase activity of NodH, a nodulation protein of Rhizobium meliloti required for host-specific nodulation. J. Bacteriol. 177, 6237–6245 (1995).

    Article  CAS  Google Scholar 

  67. Pratt, M.R., Leigh, C.D. & Bertozzi, C.R. Formation of 1,1-α,α-glycosidic bonds by intramolecular aglycone delivery. A convergent synthesis of trehalose. Org. Lett. 5, 3185–3188 (2003).

    Article  CAS  Google Scholar 

  68. Langston, S., Bernet, B. & Vasella, A. Temporary protection and activation in the regioselective synthesis of saccharide sulfates. Helv. Chim. Acta 77, 2341–2353 (1994).

    Article  CAS  Google Scholar 

  69. Goren, M.B. Sulfolipid I of Mycobacterium tuberculosis, strain H37Rv. II. Structural studies. Biochim. Biophys. Acta 210, 127–138 (1970).

    Article  CAS  Google Scholar 

  70. Minnikin, D.E., Kremer, L., Dover, L.G. & Besra, G.S. The methyl-branched fortifications of Mycobacterium tuberculosis. Chem. Biol. 9, 545–553 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the TB Structural Genomics Consortium (http://www.doe-mbi.ucla.edu/TB) for partial funding. We are grateful to J. Holton and C. Ralston at the Advanced Light Source for their assistance with data collection and processing, D. Chen and M. Schelle for fruitful scientific discussions, members of the Berger and Bertozzi labs for careful review of the manuscript, D. Keating for sharing valuable sequence data and H. Schachman for use of equipment. J.D.M. was supported by a fellowship from the Ford Foundation. This work was supported by a grant from the US National Institutes of Health to C.R.B. (AI51622) and J.M.B. (P50-GM62410).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolyn R Bertozzi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

Multiple sequence alignment of Stf0 with various sulfotransferases. (PDF 426 kb)

Supplementary Figure 2

Analytical equilibrium centrifugation of Stf0 (PDF 116 kb)

Supplementary Table 1

Data collection and refinement statistics. (PDF 42 kb)

Supplementary Table 2

Distances of hydrogen bonds discussed in text. (PDF 30 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mougous, J., Petzold, C., Senaratne, R. et al. Identification, function and structure of the mycobacterial sulfotransferase that initiates sulfolipid-1 biosynthesis. Nat Struct Mol Biol 11, 721–729 (2004). https://doi.org/10.1038/nsmb802

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb802

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing